Removal Properties of NOx by Hybrid Anion Exchanger

복합 음이온교환 수지를 이용한 NOx 제거 특성

  • Song, Sang-Hun (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Hyung-Keun (Energy Conversion Research Department, Korea Institute of Energy Research) ;
  • Park, Bo-Ryeung (Energy Conversion Research Department, Korea Institute of Energy Research) ;
  • Hwang, Eui-Hwan (School of Applied Chemical Engineering, Kongju National University) ;
  • Lee, Bum-Jae (School of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (School of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 송상헌 (충남대학교 바이오응용화학부) ;
  • 이형근 (한국에너지기술연구원 에너지전환연구부) ;
  • 박보령 (한국에너지기술연구원 에너지전환연구부) ;
  • 황의환 (공주대학교 화학공학부) ;
  • 이범재 (충남대학교 바이오응용화학부) ;
  • 황택성 (충남대학교 바이오응용화학부)
  • Received : 2006.09.06
  • Accepted : 2006.10.25
  • Published : 2006.12.10

Abstract

The adsorption properties for $NO_{2}$ by hybrid ion exchange fiber with resins were investigated. The adsorption of $NO_{2}$ was increased with increasing of adsorption time and the initial concentration. At the initial $NO_{2}$ concentration of 900 ppm, approximately 40% of initial $NO_{2}$ was adsorbed around 20 min. And the adsorption of $NO_{2}$ was decreased with increasing of flow rate from 20 to 40 L/min. The maximum adsorbed amount of initial $NO_{2}$ was 45% at the flow rate of 10 L/min. The amount of adsorption was increased with increasing the water content.

본 연구는 이온교환 수지와 섬유를 복합한 이온교환체를 이용하여 $NO_{2}$의 흡착특성을 고찰하였다. 수지량의 변화에 따른 $NO_{2}$의 흡착은 흡착시간이 경과함에 따라 증가하였다. 초기농도 변화에 따른 $NO_{2}$ 흡착은 초기 농도가 증가함에 따라 흡착량이 증가하였으며 900 ppm의 경우 20 min 내외에 약 40% 흡착되었다. 한편 유속변화에 따른 $NO_{2}$의 흡착은 유속이 증가함에 20~40 L/min까지 흡착량은 감소하였고, 유속이 10 L/min에서 최대 45% 흡착되었으며, 함수율 변화에 따른 $NO_{2}$ 흡착량은 10 min 전후에서 약 15%로 매우 낮게 나타났다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. A. M. Rubel and J. M. Stencel, Fuel, 76, 521 (1997) https://doi.org/10.1016/S0016-2361(96)00221-9
  2. J. K. Yoon, K. H. Lee, J. H. Park, S. I. Yoon, B. K. Ha, and Y. S. Mok, 材料麻堂, 13 (2000)
  3. A. Chakrabarti, A. Mizuno, K. Shimizu, T. Matsuoka, and S. Furuta, IEEE Transactions on Industry Application, 31, 500 (1994) https://doi.org/10.1109/28.382109
  4. Y. L. M. Creyghton, E. M. van Veldhuizen, and W. R. Rutgers, Electrical and optical study of pulsed positive corona, Springer-Verlag Pub. Co., 205 (1993)
  5. S. J. Scott, A long life, high repetition rate electron beam source, Springer-Verlag Pub. Co., 339 (1993)
  6. S. Pekarek, J. Rosenkranz, and H. Lonekova, Generation of electron beam for technological processes, Springer-Verlag Pub. Co., 345 (1993)
  7. T. Hori, K Saito, S. Frusaki, T. Sugo, and J. Okamoto, Chem. Soc. Japan, 12, 1792 (1986)
  8. J. Okamoto, T. Sugo, A Katakai, and H. Omichi, J. Appl. Polym. Sci., 30, 2967 (1985) https://doi.org/10.1002/app.1985.070300720
  9. T.-S. Hwang, Y.-S. Kim, J.-W. Park, and H.-K. Lee, J. Ind. Eng. Chem., 10, 139 (2004)
  10. J. K. Choi, H. S. Yang, O. H. Kwon, and Y. C. Nho, Applied Chemistry, 3, 69 (1999)
  11. J. M. Smith., Chemical Engineering Kinetics, McGraw-Hill New York (1981)