• Title/Summary/Keyword: NOx Emissions

Search Result 734, Processing Time 0.025 seconds

Exhaust Gas Recirculation Control in a Spark-Ignition LPG Engine Using Neural Networks

  • Cui, Hongwei;Liu, Vifang;Zhai, Yujian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.3-68
    • /
    • 2002
  • This paper presents a neural network approach to control exhaust gas recirculation(EGR) in a Liquefied Petroleum Gas(LPG) engine. In order to meet Increasingly stringent automotive exhaust emission regulations, alternative fuels such as LPG engines have been developed in many countries. HC&CO emissions of LPG engines can be easily reduced through air-fuel ratio control, but the control effect on NOx reduction is not good enough. Consequently EGR system is introduced to achieve a significant reduction in NOx emissions. Conventional EGR control uses the mapping method. The calibration time is long and the work is complex when adopting this mapping method. However neural networks are suitable f...

  • PDF

An Experimental Study on Performance and Exhaust Emission of a Heavy-Duty Engine with CR-DPF (CR-DPF를 장착한 대형디젤기관의 기관 및 배출가스성능에 관한 실험적 연구)

  • Kim mi soo;Oh sang ki;Han young chool
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.114-118
    • /
    • 2004
  • This research focused on the principle and the development of continuous regeneration DPF technology which was the best particulate matters removing technology of current existing technologies owing to its superior comparability and possible applicability. In addition, there were some discussions about the affecting engine parameters such as engine driving conditions and the amounts, velocity, temperature, pressure of exhaust emissions as well as sulfur contents and lubricants which were prerequisites to prevent poisoning effect on catalysts. The test was made on an 8000cc heavy-duty turbo diesel engine on which continuous regeneration DPF was in order to investigate regeneration characteristics of DPF and me performance under the condition of standard or 50ppm low sulphur diesel. Exhaust emissions, CO, HC, NOx PM were measured and compared under D-13 modes.

Generating efficiency and NOx emissions of a gas engine generator fuelled with biogas (바이오가스를 이용한 가스엔진 발전기의 발전효율 및 질소산화물 배출 특성)

  • Lee, Kyung-Taek;Cha, Hyo-Seok;Chun, Kwang-Min;Song, Soon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.306-309
    • /
    • 2009
  • Concern for new and renewable energy is growing globally. Biogas is one of the alternative fuels and consists of methane and carbon dioxide. It is difficult to achieve efficient engine operation due to a lower heating value of biogas compared to that of natural gas. In order to improve generating efficiency, finding an optimum point of ignition timing and excess air ratio is important. From this fact, generating efficiency and pollutant emissions of 2300cc gas engine generator operated by biogas as functions of ignition timings and excess air ratios were investigated in this study. As a test result, the generating efficiency of the gas engine generator using biogas was 27.34 % in the condition of the BTDC of $16^{\circ}$ and the excess air ratio of 1.4.

  • PDF

A Study on Characteristics of Mild Combustion using the Radiative Flamelet Model (비단열 화염편 모델을 이용한 Mild Combustor의 연소특성 해석)

  • Kim Gunhong;Kim Yongmo;Ahn Kookyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2005
  • Mild combustion or Flameless oxidation(FLOX) have been considered as one of the most prospective clean-combustion technologies to meet both the targets of high process efficiency and low pollutant emissions. A mild combustor with high air preheating and strong internal exhaust gas recirculation is characterized by relatively low flame temperature, low NOx emissions, no visible flame and no sound. In this study, the Steady Flamelet Approach has been applied to numerically analyze the combustion processes and NOx formation in the mild combustor. The detailed discussion has been made f3r the basic characteristics of mild combustor, numerical results and limitation of the present combustion modeling.

Effect of Swirl Angles in Low-Swirl Combustor (저선회 연소기의 선회각도에 따른 영향)

  • Jeong, Hwanghui;Choi, Inchan;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.123-125
    • /
    • 2015
  • A study has been conducted to investigate the effect of swirl angle in low swirl combustor. In this study, the employed swirl angles were $28^{\circ}$, $32^{\circ}$ and $37^{\circ}$. Direct flame photos show that the width of the flame is expanded and the length of the flame is shortened when swirl angle is increased. Also, as the swirl angle was increased, the flame stability region could be widened due to the expansion of lower flammable limit. Between 3 and 7kW, CO emissions was below 10 ppm and NOx emissions was also below 27 ppm at $O_2$ 15% basis over the lean burning range of 0.6 < ${\Phi}$ < 0.9. From this investigation of stability expansion effect and emission performance, it was identified that the swirl angle $37^{\circ}$ is most suitable swirling condition in the low swirl model combustor.

  • PDF

A Study on Efficient Methods of Using Land Engine in the Small Fishing Vessel (소형 어선에서 육상용기관의 효율적인 이용방법에 대한 연구)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2005
  • A study on the performance and exhaust emissions of diesel engine with reducing exhaust gas temperature is performed experimentally. In this paper, experiments are performed at engine speed 2200rpm, 2600rpm and load 0%, 25%, 50%, 75% and 100% by test engine with F.W. cooler passing through exhaust gas. Main measured & analyzed parameters are exhaust gas temperature, specific fuel consumption, NOx and soot emissions etc. The obtained conclusions are as follows. (1) Specific fuel consumption is the least value at load 75% and it is decreased 1.5% after remodeling F.W. cooler. (2) NOx emission is the most value at load 100% and it is increased 30.1% after remodeling F.W. cooler. (3) Soot emission is the most value at load 100% and it is decreased 20.0% after remodeling F.W. cooler.

  • PDF

The Role of Oxygen Atom in the NOx Formation of DME/Air Nonpremixed Flames (DME/Air 비예혼합화염의 NOx 생성에서 산소원자의 역할)

  • Kim, Tae-Hyun;Hwang, Cheol-Hong;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.9-18
    • /
    • 2009
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_{3}H_{8}$ and $C_{2}H_{6}$. The DME flames were calculated using Kaiser's mechanism, while the $C_{2}H_{6}$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60 % of $C_{3}H_{8}$. In the calculated results of counterflow nonpremixed flames, the $EI_{NO}$ of DME nonpremixed flame is low as much as 50 % of the $C_{2}H_{6}$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame (산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과)

  • Lee, Chang-Yeop;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

Influence of blending method with different SR on unburned carbon and NOx emission and its application

  • Lee, Byoung-Hwa;Edding, Eric G.;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.39-41
    • /
    • 2012
  • The influence of coal blending methods such as out-furnace (external or pre-mixed) blending and in-furnace (initially non-mixed) blending with different excess oxygen (highest, medium, and lowest stoichiometric conditions) on unburned carbon and NOx emissions of blend combustion in an entrained flow reactor (EFR) has been analyzed, using experimental and numerical approaches for binary coals used by Korean power plants. The results confirm that under the medium condition, contrasting processes such as reactive and un-reactive effects occur with SBRs in the out-furnace blending method. The in-furnace blending method results in an improvement in the efficiency of unburned carbon fractions and a further reduction in the NOx emission. Under the highest condition, the unburned carbon fraction in both the out-furnace and the in-furnace blending methods corresponds with the tendency under the medium condition with contrasting processes of lower magnitude, whereas the NOx emission in the highest condition increases slightly. Under the lowest conditions, the unburned carbon fraction in the out-furnace blending method gradually decreases as SBR decreases, without a competition effect. The reduction of NOx emission under the lowest conditions is more effective than those under other conditions for the two blending methods because of a homogeneous and heterogeneous NOx reduction mechanism.

  • PDF

Emission Characteristic for High Efficiency and Low NOx of Externally Oscillated Oil Burner (외부가진 오일 버너의 고효율 저 NOx 배출특성)

  • Kim, Seong-Cheon;Song, Hyoung-Woon;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.693-700
    • /
    • 2006
  • The important factor for the development of burner is the achievement of low emissions with maintaining combustibility. In case of maintaining high temperature flame and excess air to increase the combustibility, it is possible to achieve high combustion efficiency, due to the reduction of UHC(unborn hydrocarbon), carbon monoxide and soot. However, it is difficult to reduce the thermal NOx produced in the high temperature flame. To solve this problem, we developed externally oscillated oil burner which is possible for the high efficiency combustion and low NOx emission, simultaneously. The experiment of flame characteristics and NOx reduction were achieved according to the variation of frequency, amplitude and air velocity. Frequency, amplitude and air velocity are the most important parameter. The optimum operating conditions are frequency 1,900 Hz, amplitude 3 $V_{pp.}$ and air velocity 6.8 m/s. Reduction of NOx and CO are 47% and 22%, respectively.