• Title/Summary/Keyword: NOx (Nitrogen Oxide)

Search Result 102, Processing Time 0.024 seconds

Effect of EGR and Supercharging on the Diesel HCCI Combustion (디젤 예혼합 압축착화 엔진에서 배기가스 재순환과 과급의 영향)

  • Park, Se-Ik;Kook, Sang-Hoon;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.58-64
    • /
    • 2006
  • Homogeneous charge compression ignition(HCCI) combustion is an advanced technique for reducing the hazardous nitrogen oxide(NOx) and particulate matter(PM) in a diesel engine. NOx could be reduced by achieving lean homogeneous mixture resulting in combustion temperature. PM could be also reduced by eliminating fuel-rich zones which exist in conventional diesel combustion. However previous researches have reported that power-output of HCCI engine is limited by the high intensive knock and misfiring. In an attempt to extend the upper load limit for HCCI operation, supercharging in combination with Exhaust Gas Recirculation(EGR) has been applied: supercharging to increase the power density and EGR to control the combustion phase. The test was performed in a single cylinder engine operated at 1200 rpm. Boost pressures of 1.1 and 1.2 bar were applied. High EGR rates up to 45% were supplied. Most of fuel was injected at early timing to make homogeneous mixture. Small amount of fuel injection was followed near TDC to assist ignition. Results showed increasing boost pressure resulted in much higher power-output. Optimal EGR rate influenced by longer ignition delay and charge dilution simultaneously was observed.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

A studies on the Air pollutant Emission Rate calculation from vessels in the Ulsan Port (울산항 선박으로부터의 대기오염 배출량 산정에 관한 연구)

  • Cheong Kwng-Hyun;Kim Sung-Joo;Park Hung-Suck
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.111-118
    • /
    • 2005
  • The Protocol adopted in Sep. 1997 included the new Annex VI of MARPOL 73/78, which will enter into force on 19 May 2005. MARPOL Annex VI sets limits on sulphur oxide and nitrogen oxide emissions from ship exhausts and prohibits deliberate emissions of volatile organic compound (VOCs) from oil tanker in port and oil terminal. This study was conducted to find out countermeasures for the new Annex VI of MARPOL 73/78 and draw up a feasible management plan. The emission quantity of NOx and SOX from ships in Ulsan Port was calculated by U.S. EPA and Japan Marine Engineering emission factors of air pollutant from ship exhausts. In addition, volatile organic compound (VOCs) from oil tanker during the loading and discharging period, also calculated.

  • PDF

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

A Study of Improving Combustion Stability with Sonic Wave Radiation (음파를 이용한 연소 안정성 개선에 관한 연구)

  • Min, Sun-ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.401-406
    • /
    • 2020
  • NOx (nitrogen oxide) in the exhaust gas engines causes severe air pollution. NOx is produced under high-temperature combustion conditions. EGR (exhaust gas recirculation) is normally used to reduce the combustion temperature and NOx production. As the EGR ratio increases, the NOx level becomes low. On the other hand, an excessively high EGR ratio makes the combustion unstable resulting in other air pollution problems, such as unburned hydrocarbon and higher CO levels. In this study, the improvement of fuel droplets moving by the radiation of sonic waves was studied for the stable combustion using analytic and experimental methods. For the analytical study, the effects of the radiation of a sonic wave on the fuel droplet velocity were studied using Fluent software. The results showed that the small droplet velocity increased more under high-frequency sonic wave conditions, and the large droplet velocity increased more under low-frequency sonic wave conditions. For the experimental study, the combustion chamber was made to measure the combustion pressure under the sonic wave effect. The measured pressure was used to calculate the heat release rate in the combustion chamber. With the heat release rate data, the heat release rate increased during the initial combustion process under low-frequency sonic wave conditions.

Air Pollution Protection onboard by Seawater and Electrolyte

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • This research makes a new attempt to apply the activated seawater by electrolysis in the development of two-stage wet scrubber system to control the exhaust gas of large marine diesel engines. First, with using only seawater that is naturally alkaline (pH typically around 8.1). the $SO_2\;and\;SO_3$ are absorbed by relatively high solubility compared to other components of exhaust pollutants, and PM (Particulate Matter) is removed through direct contact with sprayed seawater droplets. Besides, the electrolyzed alkaline seawater by electrolysis, which contains mainly NaOH together with alkali metal ions $(i.e.\;Na^+,\;Mg^{2+},\;Ca^{2+})$, is used as the absorption medium of NOx and $CO_2$. Especially, to increase NOx absorption rate into the alkaline seawater. nitric oxide (NO) is adequately oxidized to nitrogen dioxide $(NO_2)$ in the acidic seawater, which means both volume fractions are adjusted to identical proportion. The results found that the strong acidic seawater was a valid oxidizer from NO to $NO_2$ and the strong alkaline seawater was effective in $CO_2$ absorption In the scrubber test, the SOx reduction of nearly $100\%$ could be achieved and also led to a sufficientPM reduction. Hence, the author believes that applying seawater and its electrolyte would bring the marine air pollution control system to an economical measure. Additionally it is well known that NOx and SOx concentration has a considerable influence on the $N_2O$ emission of green house gas. Although the $N_2O$ concentration exhausted from diesel engines is not as high, the green house gas effect is around 300 times greater than an equivalent volume of $CO_2$. Therefore, we investigated the $N_2O$ removal efficiency with using the electrolyzed seawater too. Finally this research would also plan to treat the effluent by applying electro-dialysis and electro-flotation technique s in the future.

Improvement of Emission Performances of a HSDI Diesel Engine with Partial Premixed Compression Ignition Combustion Method (부분 예혼합 압축착화 연소기법을 적용한 HSDI 디젤엔진의 배기 성능 개선)

  • Chung, Jae-Woo;Kang, Jeong-Ho;Kim, Nam-Ho;Min, Kyoung-Doug;Lee, Ki-Hyung;Lee, Jeong-Hoon;Kim, Hyun-Ok;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.88-96
    • /
    • 2008
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. This study used a split injection method at a 4 cylinder common-rail direct injection diesel engine in order to apply the partially premixed charge compression ignition combustion method without significantly altering engine specifications And it is investigated that the effects of the injection ratio and SCV(swirl control valve) to emission characteristics. From these tests, soot(g) and NOx(g) emission could be reduced to 40% and 92% compared to base engine performance at specified engine driving conditions(6 points with weight factors) according to application of split injection and SCV(swirl control valve).

Development and Evaluation of Portable Multiple Gas Meter (휴대용 다중 가스측정 장비 개발 및 평가)

  • Jang, Hee-Joong;Kim, Eung-Sik;Park, Jong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.483-490
    • /
    • 2019
  • Assessing the effect of forest fires and measuring the gas concentration around a fire has received little attention. Therefore, the concentrations of various gases in areas surrounding a fire need to be measured by the development of a suitable device. Unlike conventional portable devices, the AQS (Air Quality System) proposed in this paper is a portable instrument that measures five types of gases simultaneously, including CO, CO2, NOx, VOCs, and NH3, and has high durability through sensor protection algorithms. A PC-based program with an AQS connection was developed to monitor the real-time changes in the gas concentration. The reliability of the developed device was proven through a comparison of the results with other commercial gas analyzers. Measurements of the concentration due to indoor and outdoor fires were performed around a fire area to review the applicability and the predicted results were obtained.

A Numerical Study on Effects of an Air Inflow Velocity on NOx emission from a Swirl Premixed Burner (스월 예혼합 버너의 공기유입 속도가 NO 배출특성에 미치는 영향에 관한 수치해석)

  • Park, Junho;Cho, Cheon Hyeon;Sohn, Chae Hoon;Cho, Ju Hyeong;Kim, Han Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.237-238
    • /
    • 2014
  • A correlation between an air inflow velocity and $NO_x$ emission is investigated numerically. The area of a swirl premixed burner is controlled geometrically to increase or decrease an air inflow velocity. When an air velocity increases, mixedness at the burner exit is improved and NO emission at the liner exit is reduced. Although the area of an air slit is the same, NO emission shows discrepancy due to difference of air slit shapes.

  • PDF

An Experimental Study on the Exhaust pollutant Reduction in Diesel Engine using a Rice-Bran Oil (미강유를 사용한 디젤기관에서의 배기오염물질 저감에 관한 실험적 연구)

  • 이준서
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.754-762
    • /
    • 1998
  • Exhaust emissions in diesel engine are affected by fuel properties but the reason for this is not clear. Especially the recent strong interest in using low-grade fuel demands extensibe investigation in order to clarify the exhaust emissions. Bio-Diesel oil has a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. The use of bio-oils in diesel engines has received considerable atten-tion to the forseeable depletion of world oil supplies. So bio-diesel oil has been attracted with attentions for alternative and clean energy source. The purpose of this paper is to evaluate the fea-sibility of the rice-bran oil for alternative fuel in a diesel engine with rgard to exhaust emis-sions.

  • PDF