• Title/Summary/Keyword: NOV Gene

Search Result 98, Processing Time 0.026 seconds

Nannophya koreana sp. nov.(Odonata: Libellulidae): A new dragonfly species previously recognized in Korea as the endangered pygmy dragonfly Nannophya pygmaea Rambur

  • Bae, Yeon Jae;Yum, Jin Hwa;Kim, Dong Gun;Suh, Kyong In;Kang, Ji Hyoun
    • Journal of Species Research
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • A new dragonfly species, Nannophya koreana sp. nov., is described from Korea on the basis of morphology and mitochondrial cytochrome oxidase c subunit I (COI) gene sequences. Nannophya materials from Korea and other areas in Southeast Asia were compared. The new species was previously recognized in Korea as the endangered pygmy dragonfly Nannophya pygmaea Rambur, 1842, which is widely distributed in insular and peninsular Southeast Asia. However, male adults of the Nannophya population in Korea could be distinguished from other N. pygmaea populations by the presence of a thick, incomplete black stripe on the lateral synthorax that terminated at half-length (vs. continuous to wing base), light orange (vs. red) anal appendages, and 4-5 (vs. 2-3) black teeth on the ventral superior appendages. In addition, the body length of N. koreana was generally larger (1.2-1.4 times) than that of N. pygmaea, regardless of life stage. COI gene sequences from the two groups exhibited substantial genetic differences (>12%), thereby sufficiently substantiating their differentiation. The taxonomic status, distribution, and habitat of the new species are discussed.

Dasania marina gen. nov., sp. nov., of the Order Pseudomonadales, Isolated from Arctic Marine Sediment

  • Lee, Yoo-Kyung;Hong, Soon-Gyu;Cho, Hyun-Hee;Cho, Kyeung-Hee;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.505-509
    • /
    • 2007
  • An obligately aerobic bacterium, strain KOPRI $20902^T$, was isolated from a marine sediment in Ny-${\AA}$lesund, Spitsbergen Islands, Norway. Cells were irregular rods and motile with polar monotrichous flagellum. The optimum growth temperature was $17-22^{\circ}C$. Cells grew best in pH 7.0-10.0 and 3-4% sea salts (corresponding to 2.3-3.1% NaCl). The novel strain required $Ca^{2+}$ or $Mg^{2+}$ in addition to NaCl for growth. Sequence analysis of 16S rRNA gene revealed that the Arctic isolate is distantly related with established species (<92.4% sequence similarity) and formed a monophyletic group with Cellvibrio, which formed a distinct phylogenetic lineage in the order Pseudomonadales. Predominant cellular fatty acids [$C_{16:1}\;{\omega}7c/15:0$ iso 2OH (45.3%), $C_{16:0}$ (18.4%), ECL 11.799 (11.2%), $C_{10:0}$ 3OH (10.4%)]; DNA G+C content (37.0 mol%); nitrate reduction to nitrogen; absence of aesculin hydrolysis, N-acetyl-${\beta}$-glucosaminidase and esterase; no assimilation of arabinose, galactose, glucose, lactose, maltose, and trehalose differentiated the strain from the genus Cellvibrio. Based on the phylogenetic and phenotypic characteristics, Dasania marina gen. nov., sp. nov. is proposed in the order Pseudomonadales. Strain KOPRI $20902^T$ (=KCTC $12566^T$=JCM $13441^T$) is the type strain of Dasania marina.

Chitinophaga soli sp. nov. and Chitinophaga terrae sp. nov., Isolated from Soil of a Ginseng Field in Pocheon Province, Korea

  • An, Dong-Shan;Im, Wan-Taek;Lee, Sung-Taik;Choi, Woo-Young;Yoon, Min-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.705-711
    • /
    • 2007
  • Two novel strains of the Cytophaga-Flexibacter-Bacteroides(CFB) group, designated Gsoil $219^T$ and Gsoil $238^T$, were isolated from soil of a ginseng field of Pocheon Province in Korea. Both strains were Gram-negative, aerobic, nonmotile, nonspore-forming, and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that both isolates belong to the genus Chitinophaga but were clearly separated from established species of this genus. The sequence similarities between strain Gsoil $219^T$ and type strains of the established species and between strain Gsoil $238^T$ and type strains of the established species ranged from 91.4 to 94.7% and 91.6 to 94.2%, respectively. Phenotypic and chemotaxonomic data(major menaquinone, MK-7; major fatty acids, $iso-C_{15:0}\;and\;C_{16:1}\omega5c$; major hydroxy fatty acid, $iso-C_{17:0}3-OH$; major polyamine, homospermidine) supported the affiliation of both strains Gsoil $219^T$ and Gsoil $238^T$ to the genus Chitinophaga. Furthermore, the results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of both strains from the other validated Chitinophaga species. Therefore, the two isolates represent two novel species, for which the name Chitinophaga soli sp. nov.(type strain, Gsoil $219^T=KCTC\;12650^T=DSM\;18093^T$) and Chitinophaga terrae sp. nov.(type strain, Gsoil $238^T=KCTC\;12651^T=DSM\;18078^T$) are proposed.

Mrakia terrae sp. nov. and Mrakia soli sp. nov., Two Novel Basidiomycetous Yeast Species Isolated from Soil in Korea

  • Park, Yuna;Maeng, Soohyun;Oh, Junsang;Sung, Gi-Ho;Srinivasan, Sathiyaraj
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.469-475
    • /
    • 2021
  • Three strains, YP416T, YP421T, and Y422, were isolated from soil samples in Pocheon City, Gyeonggi province, South Korea. The strains belong to two novel yeast species in the genus Mrakia. Molecular phylogenetic analysis showed that the strain YP416T was closely related to Mrakia niccombsii. Still, it differed by 9 nucleotide substitutions with no gap (1.51%) in the D1/D2 domain of the LSU rRNA gene and 14 nucleotide substitutions with 7 gaps (2.36%) in the ITS region. The strain YP421T differed from the type strain of the most closely related species, Mrakia aquatica, by 5 nucleotide substitutions with no gap (0.81%) in the D1/D2 domain of the LSU rRNA gene and 9 nucleotide substitutions with one gap (1.43%) in the ITS region. The names Mrakia terrae sp. nov. and Mrakia soli sp. nov. are proposed, with type strains YP416T (KCTC 27886T) and YP421T (KCTC 27890T), respectively. MycoBank numbers of the strains YP416T and YP421T are MB 836844 and MB 836847, respectively.

Haraldiophyllum hawaiiense sp. nov. (Delesseriaceae, Rhodophyta): a new mesophotic genus record for the Hawaiian Islands

  • Paiano, Monica O.;Huisman, John M.;Cabrera, Feresa P.;Spalding, Heather L.;Kosaki, Randall K.;Sherwood, Alison R.
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.337-347
    • /
    • 2020
  • Haraldiophyllum hawaiiense sp. nov. is described as a new mesophotic alga and a new genus record for the Hawaiian Islands. Six specimens were collected at a depth range of 81-93 m from Papahānaumokuākea Marine National Monument, and their morphology investigated, as well as molecular phylogenetic analyses of the plastidial ribulose-1,5-bisphosphate carboxylase-oxygenase large-subunit (rbcL) gene and a concatenated alignment of rbcL and nuclear large-subunit rRNA gene (LSU) sequences. Phylogenetic analyses supported H. hawaiiense sp. nov. as a distinct lineage within the genus Haraldiophyllum, and sister to a large clade containing the type species, H. bonnemaisonii, as well as H. crispatum and an undescribed European specimen. The six Hawaiian specimens were shown to be identical, but unique among other species of the genus as well as the recently segregated genus Neoharaldiophyllum, which comprises half of the species previously included in Haraldiophyllum. The vegetative morphology of H. hawaiiense sp. nov. resembles Neoharaldiophyllum udoense (formerly H. udoensis); however, no female or post-fertilization structures were found in the Hawaiian specimens to allow a more comprehensive comparison. The molecular phylogenies demonstrate that Haraldiophyllum is paraphyletic, suggesting either that the Myriogrammeae tribe includes undescribed genera, including Haraldiophyllum sensu stricto, or that Neoharaldiophyllum species should be transferred into the genus Haraldiophyllum. However, based on vegetative morphology and molecular analyses, and pending resolution of this taxonomic issue, the Hawaiian specimens are placed within the genus Haraldiophyllum. This new record for the Hawaiian Islands highlights the novel biodiversity from mesophotic depths, reaffirming the need for further investigation into the biodiversity of Mesophotic Coral Ecosystems.

Description of Vishniacozyma terrae sp. nov. and Dioszegia terrae sp. nov., Two Novel Basidiomycetous Yeast Species Isolated from Soil in Korea

  • Soohyun Maeng;Yuna Park;Gi-Ho Sung;Hyang Burm Lee;Myung Kyum Kim;Sathiyaraj Srinivasan
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.439-447
    • /
    • 2022
  • Two strains, YP344 and YP579 were isolated from soil samples in Pocheon City, Gyeonggi Province, South Korea. The strains YP344 and YP579 belong to the genus Vishniacozyma and Dioszegia, respectively. The molecular phylogenetic analysis showed that the strain YP344 was closely related to Vishniacozyma peneaus. Strain YP344T differed by four nucleotide substitutions with no gap (0.70%) in the D1/D2 domain of the LSU rRNA gene and 16 nucleotide substitutions with 8 gaps (5.76%) in the ITS region. On the other hand, the strain YP579T varied from the type strain of the most closely related species, Dioszegia zsoltii var. zsoltii, by 6 nucleotide substitutions with four gaps (1.64%) in the D1/D2 domain of LSU rRNA gene and 26 nucleotide substitutions with 14 gaps (8.16%) in the ITS region. Therefore, the name Vishniacozyma terrae sp. nov. and Dioszegia terrae sp. nov. are proposed, with type strains YP344T (KCTC27988T) and YP579T (KCTC 27998T), respectively.

Diaporthe eleutharrhenae sp. nov. Associated with a Critically Endangered Liana in China

  • Song, Shijie;Landrein, Sven
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.99-103
    • /
    • 2022
  • A new fungus isolated from the leaves of Eleutharrhena macrocarpa in southern Yunnan, China is described using morphological and molecular evidence. Phylogenetic trees based on the combined nuclear ribosomal DNA internal transcribed spacer (ITS), translation elongation factor-1α (TEF1), and β-tubulin gene (TUB2) sequences showed that Diaporthe eleutharrhenae sp. nov. is sister to Diaporthe chinensis N.I. de Silva, Lumyong & K.D. Hyde and morphologically differs in shorter alpha conidia (5-8.5× 1.5-2 ㎛) and the presence of beta conidia. This study also resolves a nomenclatural problem, as two taxa were published using the same name. To avoid confusion, the unrelated D. chinensis H. Dong, J. W. Xia & X. G. Zhang is here renamed as D. dongii (H. Dong, J. W. Xia & X. G. Zhang) S. J. Song & Landrein, sp. nov. in honor of the author that described this species. Study and description of fungi associated with threatened tropical species could help to understand their ecology as well as the potential spread of fungi onto cultivated crop species.

Sufflavibacter maritimus gen. nov., sp. nov., Novel Flavobacteriaceae Bacteria Isolated from Marine Environments

  • Kwon, Kae-Kyoung;Yang, Seung-Jo;Lee, Hee-Soon;Cho, Jang-Cheon;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1379-1384
    • /
    • 2007
  • Four Gram-negative, chemoheterotrophic, non-motile, yellow-colored strains were isolated from the East Sea or from deep-sea sediments of Nankai Trough by standard dilution plating. Characterization by polyphasic approaches indicated that the four strains are members of the same species. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains formed a coherent and novel genus-level lineage within the family Flavobacteriaceae. The dominant cellular fatty acids were i-C15:0, 3-OH i-C17:0, and 2-OH i-C15:0 and/or C16:1 ${\omega}7c$. Predominance of 2-OH i-C15:0 and/or C16:1 ${\omega}7c$ clearly differentiated the strains from closely related members. The DNA G+C contents ranged 35.1-36.2 mol%. It is proposed, from the polyphasic evidence, that the strains should be placed into a novel genus and species named Sufflavibacter maritimus gen. nov., sp. nov., with strain $IMCC1001^T(=KCCM\;42359^T=NBRC\;102039^T)$ as the type strain.

Cochleicola gelatinilyticus gen. nov., sp. nov., Isolated from a Marine Gastropod, Reichia luteostoma

  • Shin, Su-Kyoung;Kim, Eunji;Choi, Sungmi;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1439-1445
    • /
    • 2016
  • A yellow, rod-shaped, non-motile, gram-negative, and strictly aerobic bacterial strain, designated LPB0005T, was isolated from a marine gastropod, Reichia luteostoma. Here the genome sequence was determined, which comprised 3,395,737 bp with 2,962 protein-coding genes. The DNA G+C content was 36.3 mol%. The 16S rRNA gene sequence analysis indicated that the isolate represents a novel genus and species in the family Flavobacteriaceae, with relatively low sequence similarities to other closely related genera. The isolate showed chemotaxonomic properties within the range reported for the family Flavobacteriaceae, but possesses many physiological and biochemical characteristics that distinguished it from species in the closely related genera Ulvibacter, Jejudonia, and Aureitalea. Based on phylogenetic, phenotypic, and genomic analyses, strain LPB0005T represents a novel genus and species, for which the name Cochleicola gelatinilyticus gen. nov., sp. nov. is proposed. The type strain is LPB0005T (= KACC 18693T = JCM 31218T).

Diversity of the Bambusicolous Fungus Apiospora in Korea: Discovery of New Apiospora Species

  • Sun Lul Kwon;Minseo Cho;Young Min Lee;Hanbyul Lee;Changmu Kim;Gyu-Hyeok Kim;Jae-Jin Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.302-316
    • /
    • 2022
  • Many Apiospora species have been isolated from bamboo plants - to date, 34 bambusicolous Apiospora species have been recorded. They are known as saprophytes, endophytes, and plant pathogens. In this study, 242 bambusicolous Apiospora were isolated from various bamboo materials (branches, culms, leaves, roots, and shoots) and examined using DNA sequence similarity based on the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions. Nine Apiospora species (Ap. arundinis, Ap. camelliae-sinensis, Ap. hysterina, Ap. lageniformis sp. nov., Ap. paraphaeosperma, Ap. pseudohyphopodii sp. nov., Ap. rasikravindrae, Ap. saccharicola, and Ap. sargassi) were identified via molecular analysis. Moreover, the highest diversity of Apiospora was found in culms, and the most abundant species was Ap. arundinis. Among the nine Apiospora species, two (Ap. hysterina and Ap. paraphaeosperma) were unrecorded in Korea, and the other two species (Ap. lageniformis sp. nov. and Ap. pseudohyphopodii sp. nov.) were potentially novel species. Here, we describe the diversity of bambusicolous Apiospora species in bamboo organs, construct a multi-locus phylogenetic tree, and delineate morphological features of new bambusicolous Apiospora in Korea.