• Title/Summary/Keyword: NOS gene

Search Result 329, Processing Time 0.022 seconds

Organ Specific Expression of the nos-NPT II Gene in Transgenic Hybrid Poplar (형질 전환된 포플러에 대한 nos-NPT II 유전자의 기관별 발현 특성)

  • Chun, Young Woo;Klopfenstein, Ned B.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.77-86
    • /
    • 1995
  • To effectively modify tree function with genetic engineering, transgenes must be expressed at the proper level in the appropriate tissues at suitable developmental stages. Toward understanding the spatial and temporal expression of transgenes in woody plants, transgene expression was evaluated in three greenhouse-grown, transgenic lines of Populus alba ${\times}$ P. grandidentata hybrid clone 'Hansen'. All transgenic poplar lines possess constructs containing the bacterial nopaline synthase(nos) promoter linked to a neomycin phosphotransferase II(NPT II) selectable marker gene. In addition, each transgenic poplar line contains one of the following gene constructs : 1) a wound-inducible potato proteinase inhibitor II (pin2) promoter linked to a chloramphenicol acetyltransferase(CAT) reporter gene. 2) a nos promoter linked to a PIN2 structural gene : or 3) a Cauliflower Mosaic Virus 35s promoter linked to a PIN2 structural gene. Polymerase chain reaction(PCR) was used to verify the presence of foreign genes in the poplar genome. Enzyme-linked immunosorbent assays(ELISAs) were used to evaluate organ specific expression of the nos-NPT II construct. NPT II expression was detected in leaves, petioles, stems, and roots of transgenic poplar, thereby indicating that the nos promoter is potentially effective for general constitutive expression of transgenes. NPT expression varied among transgenic poplar lines and among organs for one transgenic line, Tr15. With Tr15, NPT II levels were highest in older leaves and petioles. These results indicate that screening of several transgenic lines may be required to identify lines with optimal transgene expression.

  • PDF

T-786C, G894T, and Intron 4 VNTR (4a/b) Polymorphisms of the Endothelial Nitric Oxide Synthase Gene in Bladder Cancer Cases

  • Polat, Fikriye;Diler, Songul Budak;Azazi, Irfan;Oden, Artun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2199-2202
    • /
    • 2015
  • The aim of the present study was to determine whether endothelial nitric oxide synthase (eNOS) gene polymorphisms play a role in development of bladder cancer in the Turkish population. The study was performed on 75 patients (64 men, 11 women) with bladder cancer and 143 healthy individuals (107 men, 36 women) with any kind of cancer history. Three eNOS gene polymorphisms (T-786C promoter region, G894T and intron 4 VNTR 4a/b) were determined with polymerase chain reaction and restriction fragment lenght polymorphism methods. In our study, GT and TT genotypes for eNOS G894T polymorphism were found to significantly vary among patients with bladder cancer and control group (OR: 0.185, CI: 0.078-0.439, p=0.0001 and OR: 0.324, CI: 0.106-0.990, p=0.026). Also, the frequency of the 894T allele was significantly higher in patients with bladder cancer (51%). No association was identified for eNOS T-786C and intron 4 VNTR 4a/b polymorphisms between patients with bladder cancer and control groups in our Turkish population.

Role of $NF-_{{\kappa}B}$ Binding Sites in the Regulation of Inducible Nitric Oxide Synthase by Tyrosine Kinase

  • Ryu, Young-Sue;Hong, Jang-Hee;Lim, Jong-Ho;Bae, So-Hyun;Ahn, Ihn-Sub;Seok, Jeong-Ho;Lee, Jae-Heun;Hur, Gang-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • In macrophages, lipopolysaccharide (LPS) alone or in combination with $interferon-{\gamma}\;(IFN-{\gamma})$ has been shown to release a nitric oxide (NO) through the increase of the transcription of the inducible nitric oxide synthase (iNOS) gene. To investigate the exact intracellular signaling pathway of the regulation of iNOS gene transcription by LPS plus $IFN-{\gamma},$ the effects of protein tyrosine kinase (PTK) inhibitor and protein kinase C (PKC) inhibitors on NO production, iNOS mRNA expression, nuclear $factor-_{\kappa}B\;(NF-_{\kappa}B)$ binding activity and the promoter activity of iNOS gene containing two $NF-_{\kappa}B$ sites have been examined in a mouse macrophage RAW 264.7 cells. LPS or $IFN-{\gamma}$ stimulated NO production, and their effect was enhanced synergistically by mixture of LPS and $IFN-{\gamma}.$ The PTK inhibitor such as tyrphostin reduced LPS plus $IFN-{\gamma}-induced$ NO production, iNOS mRNA expression and $NF-_{\kappa}B$ binding activity. In contrast, PKC inhibitors such as H-7, Ro-318220 and staurosporine did not show any effect on them. In addition, transfection of RAW 264.7 cells with iNOS promoter linked to a CAT reporter gene revealed that tyrphostin inhibited the iNOS promoter activity through the $NF-_{\kappa}B$ binding site, whereas PKC inhibitors did not. Taken together, these suggest that PTK, but not PKC pathway, is involved in the regulation of the iNOS gene transcription through the $NF-_{\kappa}B$ sites of iNOS promoter in RAW 264.7 macrophages by LPS plus $IFN-{\gamma}$.

  • PDF

The Effect of Galkunhwanglyeonhwanggum-tang (GGT) and Sopunghwalhyeol-tang (SPT) on Gene Expression Levels of MCP-1, ICAM-1, VCAM-1, and eNOS in HUVECs (갈근황연황금탕(葛根黃蓮黃芩湯)과 소풍활혈탕(疎風活血湯)이 HUVEC 내에 MCP-1, ICAM-1, VCAM-1 and eNOS의 유전자 발현량에 대해 미치는 영향)

  • Jeong, Hyun-jin;Jeon, Sang-yoon;Jang, Hye-yeon;Kim, Min-wook
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.668-675
    • /
    • 2020
  • Objectives: The aim of this study was to compare the effects of Galkunhwanglyeonhwanggum-tang (GGT), and Sopunghwalhyeol-tang (SPT) on gene expression of MCP-1, ICAM-1, VCAM-1, and eNOS in human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were treated with GGT and SPT at concentrations of 50, 100, and 200 ㎍/mL. Gene expression of MCP-1, ICAM-1, VCAM-1, and eNOS in HUVECs was analyzed by the polymerase chain reaction (PCR), and electrophoresis was performed to verify the gene expression level. Results: 1. MCP-1 gene expression was more strongly decreased by SPT than by GGT. 2. ICAM-1 and VCAM-1 gene expressions were more strongly decreased by SPT than by GGT 3. GGT significantly increased eNOS gene expression, but SPT did not. Conclusions: These findings suggest that GGT and SPT regulate gene expression related to anti-inflammatory effects in HUVECs. Clinical application of these Korean medicines to diseases related to dyslipidemia, such as cardiovascular disease, will require additional in vivo experiments to verify the anti-inflammatory effects of GGT and SPT.

Qualitative PCR Detection of GM rices (Milyang 204 and Iksan 483) developed in Korea (국내에서 개발된 GM 쌀 (밀양 204호, 익산 483호)에 대한 정성 PCR 분석법 개발)

  • Kim, Jae-Hwan;Song, Hee-Sung;Jee, Sang-Mi;Ryu, Tae-Hun;Kim, Dong-Hern;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.335-338
    • /
    • 2005
  • For the development of qualitative PCR detection method of genetically modified rice (Oryza sativa L.), rice species specific gene, SAMDC1 (S-adenosylmethionine decarboxylase), was selected and validated as suitable for use as an endogenous reference gene in rice. The primer pair OsSAMDC1-5'/3' with 110 bp amplicon was used for amplification of the rice endogenous gene, SAMDC1 and no amplified product was observed from 19 different plants as templates. Qualitative PCR method was assayed with 2 different GM rices (Milyang 204 and Iksan 483) developed in Korea. For the qualitative PCRs, the construct-specific detection primer pairs were constructed. Os204-5'/OsNOS-3' amplifying the junction region of GUS gene and NOS terminator introduced in Milyang 204 gave rise to an amplicon 172 bp; also, Os483-5'/OsNOS-3' amplifying the junction region of Bar gene and NOS terminator introduced in Iksan 483 gave rise to an amplicon 161 bp.

Possible Relation between the NOS3 Gene GLU298ASP Polymorphism and Bladder Cancer in Turkey

  • Verim, Levent;Toptas, Bahar;Ozkan, Nazli Ezgi;Cacina, Canan;Turan, Saime;Korkmaz, Gurbet;Yaylim, Ilhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.665-668
    • /
    • 2013
  • Endothelial nitric oxide synthase (eNOS), encoded by the NOS3 gene, has been suggested to play an important role in uncontrolled cell growth in several cancer types. The objective of this study was to evaluate the role of the NOS3 Glu298Asp polymorphism in bladder cancer susceptibility in a Turkish population. We determined the genotypes of 66 bladder cancer cases and 88 healthy controls. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. A significant association for NOS3 Glu298Asp heterozygotes genotypes and T allele were found between healthy controls and bladder cancer, respectively (p<0.001: p=0.002). There were no significant associations between any genotypes and the stage, grade, and histological type of bladder cancer. Our study suggested an increased risk role of NOS3 GT genotype in bladder cancer susceptibility in our Turkish population.

Role of Angiotensin II and Nitric Oxide in the Rat Paraventricular Nucleus

  • Yang, Eun-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • To investigate the mutual relationship between angiotensin II (Ang II) and nitric oxide (NO) in paraventricular nucleus (PVN), Ang II receptor type Ia $(AT_{1A}),$ type Ib $(AT_{1B}),$ endothelial constitutive nitric oxide synthase (ecNOS), and neuronal constitutive nitric oxide synthase (ncNOS) mRNA levels of rat PVN were measured after unilateral carotid artery ligation. $AT_{1A}$ and $AT_{1B}$ mRNA levels were markedly elevated 6 hrs after unilateral carotid artery ligation. Losartan injection $(10\;{\mu}g/0.3\;{\mu}l)$ into the PVN augmented of the increment of $AT_{1A}$ and $AT_{1B}$ mRNAs It also increased ecNOS gene expression. In addition, $AT_{1B}$ mRNA levels increased after N-nitro-L-arginine methyl ester (L-NAME) injection $(50\;{\mu}g/0.3\;{\mu}l)$ into the PVN. These results suggest that Ang II and NO in the rat PVN may interplay, at least in part, through regulation of gene expression of ecNOS and $AT_{1B},$ respectively.

  • PDF

Hepatic Vascular Stress Gene Expression in the Liver Response to Trauma

  • Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.62-67
    • /
    • 2004
  • Trauma remains one of the important sources leading to systemic inflammatory response anti sub-sequent multiple organ failure. Although hepatic microvascular dysfunction occurs during trauma, the mechanism responsible remains unclear. The aim of this study was to investigate the effect of trauma on hepatic vascular stress gene expression. Femur fracture (EFx) was induced by torsion to the femur at midshaft. Liver samples were taken for RT-PCR analysis of mRNA for gtenes of interest: endothelin-1 (ET-1), its receptors $ET_A$ and $ET_B$, nitric oxide synthases (iNOS and eNOS), cyclooxygenase-2 (COX-2), heme oxygenase-1 (HO-1), and tumor necrosis tactor-${\alpha}$ (TNF-${\alpha}$). The expression of ET-1 mRNA was significantly increased by FFx. Expression of mRNA in FFx group showed no change in $ET_A$, $ET_B$, iNOS and HO-1 and showed a slight increase of 2.2-fold and 2.7-fold for eNOS tll1d COX-2, respectively. The level of TNF-${\alpha}$ mRNA significantly increased in FFx group. In conclusion, mild trauma alone causes little change in expression of vasoactive mediators.

Deficiency of iNOS Does Not Prevent Isoproterenol-induced Cardiac Hypertrophy in Mice

  • Cha, Hye-Na;Hong, Geu-Ru;Kim, Yong-Woon;Kim, Jong-Yeon;Dan, Jin-Myoung;Park, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.153-159
    • /
    • 2009
  • We investigated whether deficiency of inducible nitric oxide synthase (iNOS) could prevent isoproterenol-induced cardiac hypertrophy in iNOS knockout (KO) mice. Isoproterenol was continuously infused subcutaneously (15 mg/kg/day) using an osmotic minipump. Isoproterenol reduced body weight and fat mass in both iNOS KO and wild-type mice compared with saline-infused wild-type mice. Isoproterenol increased the heart weight in both iNOS KO and wild-type mice but there was no difference between iNOS KO and wild-type mice. Posterior wall thickness of left ventricle showed the same tendency with heart weight. Protein level of iNOS in the left ventricle was increased in isoproterenol-infused wild-type mice. The gene expression of interleukin-6 (IL-6) and transforming growth factor-${\beta}$ (TGF-${\beta}$) in isoproterenol-infused wild-type was measured at 2, 4, 24, and 48-hour and isoproterenol increased both IL-6 (2, 4, 24, and 48-hour) and TGF-${\beta}$ (4 and 24-hour). Isoproterenol infusion for 7 days increased the mRNA level of IL-6 and TGF-${\beta}$ in iNOS KO mice, whereas the gene expression in wild-type mice was not increased. Phosphorylated form of extracellular signal-regulated kinases (pERK) was also increased by isoproterenol at 2 and 4-hour but was not increased at 7 days after infusion in wild-type mice. However, the increased pERK level in iNOS KO mice was maintained even at 7 days after isoproterenol infusion. These results suggest that deficiency of iNOS does not prevent isoproterenol-induced cardiac hypertrophy and may have potentially harmful effects on cardiac hypertrophy.

Effect of White Ginseng on the Proliferation of Mouse Peritoneal Macrophages and Their Nitric Oxide Synthesis (백삼성분이 마우스 복강 탐식세포의 증식 및 Nitric Oxide 생성에 미치는 영향)

  • 김주원;배지현
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.4
    • /
    • pp.484-490
    • /
    • 1997
  • In an attempt to investigate the effects of white ginseng on the proliferation and the nitric oxide(NO) secretion of mouse peritoneal macrophages, which are the first mai or defense phagocytes in the immune system, the studies have been carried out. In the macrophage proliferation assay using the $^3$H-thymidine incorporation, the total saponin or Ginsenoside Rb$_2$ were added to the medium at the concentration of 0 to 256$\mu\textrm{g}$/$m\ell$. DNA synthesis of the macrophage was increased at 64$\mu\textrm{g}$/$m\ell$ of total saponin and either 16$\mu\textrm{g}$/$m\ell$ or 64$\mu\textrm{g}$/$m\ell$ of Ginsenoside Rb$_2$, respectively. Also, the effect o(white ginseng on the nitric oxide secretion of the macrophages was investigated. The addition of either total saponin or Ginsenoside Rb$_2$ at the concentration of 20$\mu\textrm{g}$/$m\ell$ significantly increased the secretion of NO from the macrophages. The nitric oxide synthase (NOS) gene expression which is responsible for the synthesis of the nitric oxide has been studied using reverse transcription polymerase chain reaction. In RT-PCR, the $\beta$-actin and nos gene expression have been analyzed. 20$\mu\textrm{g}$/$m\ell$ of either total saponin or Ginsenoside Rb$_2$ increased nos gene expression of the macrophages.

  • PDF