• Title/Summary/Keyword: NOS

Search Result 2,348, Processing Time 0.026 seconds

Effects of Nitric Oxide on the Induction of Experimental Allergic Orchitis in Guinea Pig

  • An, Jeong Hwan;Kim, In Keun;Kim, Taek Sang;Kwak, Hyun Jeong;Rhew, Hyun Yul;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.108-115
    • /
    • 2004
  • Background: Production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathology of autoimmune disease. It is unknown whether iNOS expression is increased within testes and whether iNOS and NO have essential roles in the pathogenesis of EAO. Methods: EAO was induced in guinea pig testes at 17 days after secondary immunization by administration of crude extract (CE) and purified glycoprotein 1 (GP1) from normal guinea pig testes. iNOS gene expression was assessed by RT-PCR and Northern blot analysis in testes. Localization of iNOS and Mac-1 and the indicator of NO-mediated tissue injury, nitrotyrosine, were detected in the testicular lesion by immunohistochemistry. Results: In control testes, inflammation and iNOS gene expression were not detected, whereas, in CE- and GP1-injected testes, inflammation and marked iNOS gene expression were evident at day 17 after secondary immunization. Immunohistochemistry of Mac-1 showed the colocalization with iNOS protein and nitrotyrosyl proteins in intertubules, suggesting that NO produced by infiltrated macrophages may be involved in inflammatory lesions of intertubules. Intraperitoneal administration of aminoguanidine significantly prevented EAO with reduction of inflammation, iNOS expression and nitrotyrosine formation. Conclusion: These results suggest that NO production by macrophages may be important in the pathogenesis of CE- and GP1-induced EAO. Furthermore, this study demonstrated the therapeutic potential of iNOS inhibitor in the treatment of inflammatory and autoimmune mediated-diseases.

Analyzing Nature of Science(NOS) included in elementary school science textbooks (초등학교 과학 교과서에 반영된 과학의 본성(Nature of Science, NOS) 분석 - 초등학교 3, 4, 5, 6학년 지구과학 분야를 중심으로 -)

  • Moon, Seo-Young;Han, Shin
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.625-640
    • /
    • 2014
  • In 21st century, it is essential to understand Nature of Science (NOS) related to science educational curriculum. The study analyzed Earth Science components of third- through sixth-grade science textbooks in terms of incorporated NOS themes and their relative proportions. Modified analysis methods of Chiappetta et al. (1991) and Lee (2012) are devised and adapted. The results of analysis indicates that the current elementary school textbooks include and explain all the four themes of NOS, but do not include sub-areas of each theme of NOS in a balanced way. In addition, the themes of NOS in Earth Science are not treated equally among different grades. Such results warrant the efforts to include balanced themes of NOS into elementary school science textbooks with the ultimate goal of fully and properly comprehending NOS to the students.

  • PDF

Diclofenac Inhibits $IFN-{\gamma}$ Plus Lipopolysaccharide-Induced iNOS Gene Expression via Suppression of $NF-{\kappa}B$ Activation in RAW 264.7 Macrophages

  • Bae, So-Hyun;Ryu, Young-Sue;Hong, Jang-Hee;Park, Jin-Chan;Kim, Yong-Man;Seok, Jeong-Ho;Lee, Jae-Heun;Hur, Gang-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.521-527
    • /
    • 2001
  • Diclofenac, a phenylacetic acid derivative, is a widely used non-steroidal anti-inflammatory drug (NSAID) to provide effective relief of inflammation and pain. Nitric oxide (NO) synthesized by inducible nitric oxide synthase (iNOS) has been implicated as a mediator of inflammation. We examined the inhibitory effects of diclofenac on the induction of iNOS in RAW 264.7 macrophages which were activated with lipopolysaccharide (LPS) plus interferon-gamma $(IFN-{\gamma}).$ Treatment of RAW 264.7 cells with diclofenac and other NSAIDs (aspirin and indomethacin) significantly inhibited NO production and iNOS protein expression induced by LPS plus $IFN-{\gamma}.$ Also, diclofenac but not aspirin and indomethacin, inhibited iNOS mRNA expression and nuclear factor-kappa B $(NF-{\kappa}B)$ binding activity concentration-dependently. Furthermore, transfection of RAW 264.7 cells with iNOS promoter linked to a CAT reporter gene revealed that only diclofenac inhibited the iNOS promoter activity induced by LPS plus $IFN-{\gamma}$ through the $NF-{\kappa}B$ sites of iNOS promoter. Taken together, these suggest that diclofenac may exert its anti-inflammatory effect by inhibiting iNOS gene expression at the transcriptional level through suppression of $NF-{\kappa}B$ activation.

  • PDF

Establishment of In vitro Detection System for iNOS Expression and the Verification of Suppressive Effect by Pine Needle Extract (iNOS 발현 검출을 위한 in vitro 시스템의 확립 및 적송잎 추출물에 의한 저해효과 검증)

  • Kim, Nam-Young;Jang, Hye-Ji;Lee, Dong-Geun;Jang, Min-Kyung;Lee, Seung-Woo;Jeon, Myong-Je;Kim, Mi-Hyang;Kim, Sung-Gu;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.172-176
    • /
    • 2011
  • This study was aimed to verify suppressive effect of pine-needle extract on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression. In order to evaluate suppressive effect on iNOS expression, RAW 264.7 cells were stably transfected using an iNOS promoterluciferase reporter plasmid yielding RAW 264.7/pGL2-NeomiNOS_ pro11 cells. Established in vitro detection system revealed to diminish LPS-induced iNOS expression by 0.1~500 ${\mu}g/mL$ of saponin at the concentration-dependant manner. Pine needle extract also diminished LPS-induced iNOS expression to 92 and 88% at 500 and 50 ${\mu}g/mL$, respectively. These results suggest that the in vitro detection system developed here could be useful for the verification of suppressive materials on iNOS expression and pine needle extract could be used for the development of functional foods.

Expression of nitric oxide synthase isoforms and N-methyl-D-aspartate receptor subunits according to transforming growth factor-β1 administration after hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저산소 허혈 뇌손상에서 Transforming Growth Factor-β1 투여에 따른 Nitric Oxide Synthase 이성체와 N-methyl-D-aspartate 수용체 아단위의 발현)

  • Go, Hye Young;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.594-602
    • /
    • 2009
  • Purpose : Transforming growth factor (TGF)-${\beta}1$ reportedly increases neuronal survival by inhibiting the induction of inducible nitric oxide synthase (NOS) in astrocytes and protecting neurons after excitotoxic injury. However, the neuroprotective mechanism of $TGF-{\beta}1$ on hypoxic-ischemic (HI) brain injury in neonatal rats is not clear. The aim of this study was to determine whether $TGF-{\beta}1$ has neuroprotective effects via a NO-mediated mechanism and N-methyl-D-aspartate (NMDA) receptor modulation on perinatal HI brain injury. Methods : Cortical cells were cultured using 19-day-pregnant Sprague-Dawley (SD) rats treated with $TGF-{\beta}1$ (1, 5, or 10 ng/mL) and incubated in a 1% O2 incubator for hypoxia. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 h of hypoxic exposure (7.5% $O_2$). $TGF-{\beta}1$ (0.5 ng/kg) was administered intracerebrally to the rats 30 min before HI brain injury. The expressions of NOS and NMDA receptors were measured. Results : In the in vitro model, the expressions of endothelial NOS (eNOS) and neuronal NOS (nNOS) increased in the hypoxic group and decreased in the 1 ng/mL $TGF-{\beta}1-treated$ group. In the in vivo model, the expression of inducible NOS (iNOS) decreased in the hypoxia group and increased in the $TGF-{\beta}1$-treated group. The expressions of eNOS and nNOS were reversed compared with the expression of iNOS. The expressions of all NMDA receptor subunits decreased in hypoxia group and increased in the $TGF-{\beta}1$-treated group except NR2C. Conclusion : The administration of $TGF-{\beta}1$ could significantly protect against perinatal HI brain injury via some parts of the NO-mediated or excitotoxic mechanism.

Analysis of the Nature of Science (NOS) in Integrated Science Textbooks of the 2015 Revised Curriculum (2015 개정 교육과정 통합과학 교과서의 과학의 본성(NOS) 분석)

  • Jeon, Young Been;Lee, Young Hee
    • Journal of Science Education
    • /
    • v.44 no.3
    • /
    • pp.273-288
    • /
    • 2020
  • This study aims to investigate the presentation of the Nature of Science (NOS) in integrated science textbooks of the 2015 revised curriculum. The five integrated science textbooks published by the revised 2015 curriculum were analyzed with the conceptual framework of the four themes of the Nature of Science (NOS) (Lee, 2013) based on scientific literacy. The four themes of the NOS are 1. nature of scientific knowledge (theme I), 2. nature of scientific inquiry (theme II), 3. nature of scientific thinking (theme III), and 4. nature of interactions among science, technology, and society. The reliability of the textbooks analysis was measured between two coders by the Cohen's kappa and resulted in between 0,83 and 0,96, which means the results of analysis was consistent and reliable. The findings were as follows. First, overall theme II, nature of scientific inquiry emphasized on the integrated science textbooks of the 2015 revised curriculum by devoting the contents over 40 % in the all five publishing companies' textbooks. Second, while the theme II, nature of scientific inquiry was emphasized on the textbooks regardless of the publishing companies, other themes of the NOS were emphasized in different portions by the publishing companies. Thus, the focus among other three themes of the NOS was presented differently by the publishing companies except that in theme II, nature of scientific inquiry was most emphasized on integrated science textbooks. Third, the presentation of the NOS was identified similarly across the topics of integrated science textbooks except on topic 4. Environment and Energy. The theme IV, nature of interactions among science, technology, and society was emphasized reasonably only in the topic of Environment and Energy of the textbooks. Finally, the presentation of the NOS in the integrated science textbooks of the 2015 revised curriculum were more balanced among the four themes of the NOS with focus on the scientific inquiry compared to the previous curriculum textbooks.

Cytotoxicity by Lead-induced nNOS Phosphorylation in a Dopaminergic CATH.a Cells: Roles of Protein Kinase A

  • Kwon, Yong-Hyun;Choi, Ji-Young;Shin, Mi-Kyung;Lim, Woo-Sung;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.215-221
    • /
    • 2007
  • Neuronal cell toxicity induced by decreased nitric oxide (NO) production may be caused by modulation of constitutive neuronal NO synthase (nNOS). We used lead acetate ($Pb^{2+}$) to modulate physiological NO release and the related pathways of protein kinases like PKC, CaM-KII, and PKA in CATH.a cells, a dopaminergic cell line that has constitutive nNOS activity. In the cells treated with $Pb^{2+}$, cell viability and modulation (phosphorylation) levels of nNOS were determined by MTT assay and Western blot analysis, respectively. nNOS reductase activity (cytochrome c) was also assessed to compare the phosphorylation site-specific nNOS activity. nNOS activity was also determined by NADPH consumption rates. $Pb^{2+}$ treatment alone increased the phosphorylation of nNOS with decreased reductase activity. The phosphorylation levels increased markedly with decreased nNOS reductase activity, when $Pb^{2+}$ was combined with inhibitors for two (PKC and CaM-KII) or three (PKA, PKC and CaM-KII) protein kinases. Interestingly, when the cells were exposed to $Pb^{2+}$ plus PKC or CaM-KII inhibitor, the nNOS was phosphorylated strongly with the lowest activity. However, the levels of phosphorylated nNOS following $Pb^{2+}$ treatment decreased significantly after combined treatment with the PKA inhibitor, and $Pb^{2+}$-induced suppression of reductase activity did not occur. These results demonstrate that physiological NO release in the neuronal cells exposed to $Pb^{2+}$ can be decreased by PKA-mediated nNOS phosphorylation that may be caused by interactions with PKC and/or CaM-KII.

The Effect of Needle Electrode Electrical Stimulation on the Change of neuronal Nitric Oxide Synthase Immunoreactive Cells in the periaqueductal area of the Rat (침전극 저주파 자극이 흰쥐 중뇌수도주위 회색질의 nNOS 면역반응세포 변화에 미치는 영향)

  • Kim, Su-Han;Kim, Ji-Sung;Song, Chi-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.193-198
    • /
    • 2003
  • Acupuncture has been used as a clinical treatment in Oriental medicine for various diseases. In the present study was carried out to investigate the effects of acupuncture and electrical stimulation on the change neuronal nitric oxide synthase(nNOS) immunoreactive cells in the periaqueductal gray(PAG) area of the male SD rats. Enhanced expression of nNOS was detected in the dorsolateral-PAG(DL-PAG) area of rat with stress by fixed body, and acupuncture and needle electrode electrical stimulation groups at Hapgok like acupoint decreased the stress-induced enhancement in the expression of nNOS. The present results demonstrate that acupuncture and needle electrode electrical stimulation is effective in the modulation of expression of nNOS in the DL-PAG area under stress conditions.

  • PDF

Inhibition of p65 Nuclear Translocation by Radicicol, Heat Shock Protein Inhibitor

  • Kim, Sang-Gyu;Jeon, Young-Jin;Lee, Seog-Ki
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.285-290
    • /
    • 2005
  • We demonstrate that radicicol, a macrocyclic antifungal antibiotic originally isolated from Monosporium bonorden, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Treatment of peritoneal macrophages and RAW 264.7 cells with radicicol inhibited LPS-stimulated nitric oxide production in a dose-related manner. Immunohistochemical staining of iNOS and RTPCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunostaining of p65, EMSA, and reporter gene assay showed that radicicol inhibited $NF-\kappa/Rel$ nuclear translocation. DNA binding, and transcriptional activation, respectively. Collectively, these series of experiments indicate that radicicol inhibits iNOS gene expression by blocking $NF-\kappa/Rel$ nuclear translocation. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of radicicol on iNOS suggest that radicicol may represent a useful anti-inflammatory agent.

Identification and Characterization of Nitric Oxide Synthase in Salmonella typhimurium

  • Choi, Don-Woong;Oh, Hye-Young;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.407-412
    • /
    • 2000
  • The presence of the nitric oxide synthase (NOS) enzyme from Salmonella typhimurium (S. typhimurium) was identified by measuring radiolabeled L-$[^3H]$citrulline and NO, and Western blot analysis. NOS was partially purified by both Mono Q ion exchange and Superose 12HR size exclusion column chromatography, sequentially. The molecular weight of NOS was estimated to be 93.3 kDa by Western blot analysis. The enzyme showed a significant dependency on the typical NOS cofactors; an apparent Km for L-arginine of 34.7 mM and maximum activity between $37^{\circ}C$ and $43^{\circ}C$. The activity was inhibited by NOS inhibitors such as aminoguanidine and $N^{G}$ $N^{G}$-dimethyl-L-arginine. taken together, partially purified NOS in S. typhimurium is assumed to be a different isoform of mammalian NOSs.OSs.

  • PDF