• Title/Summary/Keyword: NORAD

Search Result 19, Processing Time 0.024 seconds

ANTENNA POINTING TO THE GEO SATELLITE USING CONVERTED NORAD TLE FROM OSCULATING ORBITAL ELEMENTS (접촉궤도요소로부터 변환된 NORAD TLE를 이용한 정지위성의 안테나 포인팅)

  • Lee, Byoung-Sun;Kim, Hae-Yeon;Hwang, Yoo-La;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • Antenna pointing analysis for a geostationary satellite has been performed for using the NORAD Two-Line-Elements (TLE) converted from osculating Keplerian orbital elements. In order to check the possibility of the reception of the satellite signal, the antenna offset angles have been derived for the Communications, Ocean, and Meteorological Satellite (COMS) which carries out weekly East-West and North-South station-keeping maneuvers and twice a day thruster assisted momentum dumping. Throughout the analysis, it is shown that the use of converted NORAD TLE simplifies the antenna pointing related interfaces in satellite mission control system. For a highly eccentric transfer orbit cases, further analysis presents that the converted NORAD TLE from near apogee gives more favorable results.

Feasibility of Using Norad Orbital Elements for Pass Programming and Catalog Generation for High Resolution Satellite Images (고해상도 위성영상 촬영계획 수립 및 카탈로그 생성을 위한 NORAD 궤도 데이터의 이용 가능성 연구)

  • 신동석;김탁곤;곽성희;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • At present, many ground stations all over the world are using NORAD orbit element data in order to track and communicate with Earth orbiting satellites. The North American Aerospace Defense Command (NORAD) observes thousands of Earth orbiting objects on daily basis and provides their orbital information via internet. The orbital data provided by NORAD, which is also called two line element (TLE) sets, allows ground stations to predict the time-varying positions of satellites accurately enough to communicate with the satellites. In order to complete the mission of a high resolution remote sensing satellite which requires very high positional determination and control accuracy, however, a mission control and tracking ground station is dedicated for the observation and positional determination of the satellite rather than using NORAD orbital sets. In the case of KITSAT-3, NORAD orbital elements are currently used for image acquisition planning and for the processing of acquired images due to the absence of a dedicated KITSAT-3 tracking ground system. In this paper, we tested and analyzed the accuracy of NORAD orbital elements and the appropriate prediction model to determine how accurately a satellite acquisites an image of the location of interest and how accurately a ground processing system can generate the catalog of the images.

APPLICABLE TRACKING DATA ARCS FOR NORAD TLE ORBIT DETERMINATION OF THE KOMPSAT-1 SATELLITE USING GPS NAVIGATION SOLUTIONS

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.243-248
    • /
    • 2005
  • NORAD Two Line Element (TLE) is very useful to simplify the ground station antenna pointing and mission operations. When a satellite operations facility has the capability to determine NORAD type TLE which is independent of NORAD, it is important to analyze the applicable tracking data arcs for obtaining the best possible orbit. The applicable tracking data arcs for NORAD independent TLE orbit determination of the KOMPSAT-1 using GPS navigation solutions was analyzed for the best possible orbit determination and propagation results. Data spans of the GPS navigation solutions from 1 day to 5 days were used for TLE orbit determination and the results were used as Initial orbit for SGP4 orbit propagation. The operational orbit determination results using KOMPSAT-1 Mission Analysis and Planning System(MAPS) were used as references for the comparisons. The best-matched orbit determination was obtained when 3 days of GPS navigation solutions were used. The resulting 4 days of orbit propagation results were within 2 km of the KOMPSAI-1 MAPS results.

NORAD TLE CONVERSION FROM OSCULATING ORBITAL ELEMENT

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • The NORAD type Two Line Element (TLE) was obtained from the osculating orbital elements by an iterative approximation procedure. The mathematical model was presented and computer program was developed for the conversion. The osculating orbital elements of the KOMPSAT-1 were converted into the NORAD TLE. Then the effect of the SGP4 atmospheric drag coefficient ($B^*$) was analyzed by comparison of the orbit propagation results with different $B^*$ values.

NORAD TLE TYPE ORBIT DETERMINATION OF LEO SATELLITES USING GPS NAVIGATION SOLUTIONS

  • Cho, Chang-Hwa;Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.197-206
    • /
    • 2002
  • NORAD Two Line Elements (TLE) are widely used for the increasing number of small satellite mission operations and analysis. However, due to the irregular periodicity of generation of the NORAD TLE, a new TLE that is independent of NORAD is required. A TLE type Orbit Determination (TLEOD) has been developed for the generation of a new TLE. Thus, the TLEOD system can provide an Antenna Control Unit (ACU) with the orbit determination result in the type of a TLE, which provides a simple interface for the commercialized ACU system. For the TLEOD system, NORAD SGP4 was used to make a new orbit determination system. In addition, a least squares method was implemented for the TLEOD system with the GPS navigation solutions of the KOMPSAT-1. Considering both the Orbit Propagation (OP) difference and the tendency of $B^{*}$ value, the preferable span of the day in the observation data was selected to be 3 days. Through the OD with 3 days observation data, the OP difference was derived and compared with that of Mission Analysis and Planning (MAPS) for the KOMPSAT-1. It has the extent from 2 km after sit days to 4 km after seven days. This is qualified enough for the efficiency of an ACU in image reception and processing center of the KOMPSAT-2.

ESTIMATION OF THE SGP4 DRAG TERM FROM TWO OSCULATING ORBIT STATES

  • Lee, Byoung-Sun;Park, Jae-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • A method for estimating the NORAD SGP4 atmospheric drag term from minimum osculating orbit states, i.e., two osculating orbits, is developed. The first osculating orbit state is converted into the NORAD TLE-type mean orbit state by iterative procedure. Then the converted TLE is propagated to the second orbit state using the SGP4 model with the incremental SGP4 drag term. The iterative orbit propagation procedure is finished when the difference of the two osculating semi-major axes between the propagated orbit and the given second orbit is minimized. In order to minimize the effect of the short-term variations of the osculating semi-major axis, the osculating argument of latitude of the second orbit is propagated to the same argument of latitude of the first orbit. The method is applied to the estimation of the NORAD-type TLE for the KOMPSAT-1 spacecraft. The SGP4 drag terms are estimated from both NORAD SGP4 orbit propagation and the numerical orbit propagation results. Variations of the estimated drag terms are analyzed for the KOMPSAT-1 satellite orbit determination results.

Derivation of the SGP4 Drag Term from the Two Osculating Orbit State for the Low Earth Orbit Satellite

  • Lee, Byoung-Sun;Park, Jae-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.33.5-33
    • /
    • 2002
  • $\textbullet$ NORAD SGP4 Model $\textbullet$ Conversion of the Osculating Orbit State into the NORAD TLE $\textbullet$ Derivation of the SGP4 Drag Term $\textbullet$ Conversion of the KOMPSAT-1 Orbit $\textbullet$ Effect of the SGP4 Drag Term $\textbullet$ Derivation of the KOMPSAT-1 B* Value $\textbullet$ Figure. Derived B* Values from KOMPSAT-1 MAPS Orbit state with considering the argument of latitude.

  • PDF

Effect on the Space and Global Environments by the Space Debris (인공위성이 우주 및 지구환경에 미치는 영향 - 우주폐기물(Space Debris) 중심으로 -)

  • Kim, Won-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.191-200
    • /
    • 2000
  • Recently, NORAD reported that only 6% of the total space objects cataloged in the table as above 10cm objects were being operated for the space missions and the others were just non-operated objects, such as rocket body, useless satellites which were finished their missions, and other fragments of space debris. A major contributor to the orbital debris background has been object breakup. Breakups generally are caused by explosions and collisions. Several international research groups and big countries' governments are trying to develop advanced technology for de-orbiting and to design new future satellites' modeling. The future need to be considered continuously that kind of technology and designing to preserve space and global environmental safety and to maintain welfare of mankind forever.

  • PDF

NORAD TLE 및 정밀 궤도정보를 이용한 운용위성-우주파편 간의 충돌 불확실성 해소 방안

  • Choe, Su-Jin;Jeong, Ok-Cheol;Kim, Hae-Dong;Jeong, Dae-Won;Kim, Hak-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.40.3-41
    • /
    • 2009
  • 인류가 위성을 발사하기 시작하면서 수많은 우주파편이 발생하게 되었고 이로 인하여 우주파편 환경은 날이 갈수록 심각해지고 있다. 우주공간을 비행하는 우주물체는 분쇄된 파편, 임무 관련 파편, rocket body 그리고 운용위성으로 구분된다. U.S. Space Surveillance Network에 따르면 10cm 이상 크기를 갖는 물체는 현재 13,000개가 넘는다고 알려지고 있고 질량만 해도 6,000톤이 넘는다. 이런 우주파편 환경으로 인하여 우주파편 간의 충돌, 우주파편과 운용위성 간의 충돌 또는 운용위성 간의 충돌에 대한 우려가 꾸준히 제기되어왔고, 불행하게도 2009년 2월 10일 Iridium 33과 Cosmos 2251 위성이 고도 790km 부근에서 충돌하여 1,300여개의 우주파편이 발생했다. 또한 2007년에 중국이 고도 860km 부근에서 750kg에 해당하는 자국의 위성(FY-1C)을 미사일로 격추시킴에 따라 2500여개의 우주파편이 발생하여 저궤도의 우주파편 환경을 더욱 심각하게 만들고 있다. 운용위성과 우주파편과의 충돌 가능성을 분석하기 위해서는 우주파편 및 위성의 궤도정보를 알아야 한다. 이를 위해서 NORAD(North American Aerospace Defense Command)에서 제공하는 TLE(Two Line Element)가 주로 이용된다. 하지만 관측 및 궤도 결정 특성상 수 km의 오차를 포함하므로 궤도정보의 공분산이 크다는 단점이 있으므로 충돌 분석을 수행하는데 있어 한계가 있다. 이 논문은 충돌분석 수행에 있어 TLE 정보만을 이용한 경우뿐만 아니라 정밀궤도와 TLE를 동시에 이용한 경우를 비교함으로써 충돌 불확실성의 해소방안을 제시할 계획이다.

  • PDF