• Title/Summary/Keyword: NON-DESTRUCTIVE DETECTION

Search Result 287, Processing Time 0.021 seconds

The Convergence Application Example of Non-destructive Inspection System (비파괴 검사 시스템의 융합 적용 사례)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • This development is for non-destructive machine using X-Ray source about detecting outline faults of below middle size products. The differentiation is product of research and development unspecialized small and medium-sized products using X-Ray light sources can check real time if the surface of an external fault of radiation dose reference, within the leakage. The speed control is possible by software solution. In addition, we're working on possibly block doors for worker safety and equipment at the same time that inner drive can be identified in the image. These principles, as a key enabler of the current inspection system such as the container is small to medium-sized parts - a long way from utilization level is possible. This research will give rise to major effects for other various non-destructive market industries except car-industry. The most important fact is that this developed non-destructive machine is controlled below $0.2micro-S{\mu}v$.

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

Defect Monitoring In Railway Wheel and Axle

  • Kwon, Seok-Jin;Lee, Dong-Hyoung;You, Won-Hee
    • International Journal of Railway
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The railway system requires safety and reliability of service of all railway vehicles. Suitable technical systems and working methods adapted to it, which meet the requirements on safety and good order of traffic, should be maintained. For detection of defects, non-destructive testing methods-which should be quick, reliable and cost-effective - are most often used. Since failure in railway wheelset can cause a disaster, regular inspection of defects in wheels and axles are mandatory. Ultrasonic testing, acoustic emission and eddy current testing method and so on regularly check railway wheelset in service. However, it is difficult to detect a crack initiation clearly with ultrasonic testing due to noise echoes. It is necessary to develop a non-destructive technique that is superior to conventional NDT techniques in order to ensure the safety of railway wheelset. In the present paper, the new NDT technique is applied to the detection of surface defects for railway wheelset. To detect the defects for railway wheelset, the sensor for defect detection is optimized and the tests are carried out with respect to surface and internal defects each other. The results show that the surface crack depth of 1.5 mm in press fitted axle and internal crack in wheel could be detected by using the new method. The ICFPD method is useful to detect the defect that initiated in railway wheelset.

  • PDF

Defect Detection in Friction Stir Welding by Online Infrared Thermography

  • Kryukov, Igor;Hartmann, Michael;Bohm, Stefan;Mund, Malte;Dilger, Klaus;Fischer, Fabian
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2014
  • Friction Stir Welding (FSW) is a complex process with several mutually interdependent parameters. A slight difference from known settings may lead to imperfections in the stirred zone. These inhomogeneities affect on the mechanical properties of the FSWed joints. In order to prevent the failure of the welded joint it is necessary to detect the most critical defects non-destructive. Especially critical defects are wormhole and lack of penetration (LOP), because of the difficulty of detection. Online thermography is used process-accompanying for defect detecting. A thermographic camera with a fixed position relating to the welding tool measures the heating-up and the cool down of the welding process. Lap joints with sound weld seam surfaces are manufactured and monitored. Different methods of evaluation of heat distribution and intensity profiles are introduced. It can be demonstrated, that it is possible to detect wormhole and lack of penetration as well as surface defects by analyzing the welding and the cooling process of friction stir welding by passive online thermography measurement. Effects of these defects on mechanical properties are shown by tensile testing.

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

A Study of Structural Safety Diagnosis using Frequency Domain Analysis of Impact-Echo Method (충격반향기법의 주파수영역 해석을 이용한 구조물 안전진단에 관한 연구)

  • 안제훈;서백수
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • Impact-echo is a method for non-destructive testing of concrete structure. This method is based on the use of impact-generated stress wave which is propagated and reflected from internal flaws within concrete structure and external surface. In this study, we performed non-destructive testing using impact-echo methods for safety diagnosis of civil engineering and building structures. There are testing cases for the three models having one-dimensional form ; The first case is the measurement of thickness change of the model, the second is the detection of cavity in the model, and the third is the predictions of the lining thickness and the position of the cavity under tunnel lining condition.

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

  • Kazuyoshi Furutaka;Akira Ohzu;Yosuke Toh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4002-4018
    • /
    • 2023
  • An integrated neutron interrogation system has been developed for non-destructive assay of highly-radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20 mg and it is not affected by intense neutron background up to 1.57 × 107 s-1 and gamma ray of 4.43 × 1010 s-1. The gamma-ray background counting rate at the PGA detector was reduced down to 3.9 × 103 s-1 even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting 0.783 g of boron and about 86.8 g of gadolinium in 30 min.

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

Non-destructive identification of fake eggs using fluorescence spectral analysis and hyperspectral imaging

  • Geonwoo, Kim;Ritu, Joshi;Rahul, Joshi;Moon S., Kim;Insuck, Baek;Juntae, Kim;Eun-Sung, Park;Hoonsoo, Lee;Changyeun, Mo;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.495-510
    • /
    • 2022
  • In this study, fluorescence hyperspectral imaging (FHSI) was used for the rapid, non-destructive detection of fake, manmade eggs from real eggs. To identify fake eggs, protoporphyrin IX (PpIX)-a natural pigment present in real eggshells-was utilized as the main indicator due to its strong fluorescence emission effect. The fluorescence images of real and fake eggs were acquired using a line-scan-based FHSI system, and their fluorescence features were analyzed based on spectroscopic techniques. To improve the detection performance and accuracy, an optimal waveband combination was investigated with analysis of variance (ANOVA), and its fluorescence ratio images (588/645 nm) were created for visualization of the real eggs between two different egg groups. In addition, real and fake eggs were scanned using a one-waveband (645 nm) handheld fluorescence imager that can perform real-time scanning for on-site applications. Then, the results of the two methods were compared with one another. The outcome clearly shows that the newly developed FHSI system and the fluorescence handheld imager were both able to distinguish real eggs from fake eggs. Consequently, FHSI showed a better performance (clearer images) compared to the fluorescence handheld imager, and the outcome provided valuable information about the feasibility of using FHSI imaging with ANOVA for the discrimination of real and fake eggs.