• Title/Summary/Keyword: NOMA

Search Result 146, Processing Time 0.025 seconds

Effects of Beam Configuration on Performances of NOMA System for Millimeter Wave Channels

  • Wonkyu Kim;Thanh Ngoc Nguyen;Taehyun Jeon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.59-65
    • /
    • 2024
  • Non-orthogonal multiple access (NOMA) is a technique that forms a NOMA group composed of two or more users and transmits the superimposed signals of all users in the group through a single beam. In case all users in a NOMA group fall within the main lobe, a high data rate is guaranteed. However, in case not all users in the group fall within the main lobe due to the narrow beam width, the sum data rate decreases, and the data rate disparity between users inside and outside the main lobe widens significantly, leading to reduced fairness. On the other hand, an excessively wide beam might reduce the channel gain which lowers the sum data rate. This paper discusses the effects of beam configuration on the throughput and fairness performances of the NOMA system in the millimeter wave channel environments with simulation results for various channel parameters including the number of antennas and beam directions.

A Comparison of BER Performance for Receivers of NOMA in 5G Mobile Communication System (5G 이동 통신 시스템에서 비직교 다중접속의 수신기들에 대한 BER 성능의 비교)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.7-14
    • /
    • 2020
  • In the fifth generation (5G) mobile networks, the mobile services require 100 times faster connections. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In NOMA, the users share the channel resources, so that the more users can be served simultaneously. There are several advantages offered by NOMA, such as higher spectrum efficiency and low transmission latency, compared to orthogonal multiple access (OMA), which is usually used in the fourth generation (4G) mobile networks, for example, long term evolution (LTE). In this paper, we compare the receivers for NOMA. The standard NOMA receiver, the non-SIC NOMA receiver, and the symmetric superposition coding (SC) NOMA receiver are compared. Specifically, it is shown that the performance of the standard receiver is the best, whereas the performances of the non-SIC receiver and symmetric SC receiver are dependent on the power allocation.

A Conditional Clustering Scheme for Hybrid NOMA in Millimeter Wave Communication System

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • Millimeter-wave (mmWave) and Non-orthogonal multiple access (NOMA) are expected to be the major techniques that lead to the next generation wireless communication. NOMA provides a high spectrum efficiency by sharing of spatial resources among users in the same frequency band. Meanwhile, millimeter-wave gives a huge underutilized bandwidth at extremely high frequency band (EHF) which covers 30GHz to 300GHz. These techniques have been proven in several recent literatures to achieve high data rates. The combination of NOMA and millimeter-wave techniques further improves average sum capacities, as well as reduces the interference compared to conventional wireless communication systems. In this paper, we focus on hybrid NOMA system working in millimeter-wave frequency. We propose a clustering algorithm used for a hybrid NOMA scheme to optimize the usage of wireless resources. The proposed clustering algorithm adds several conditions in grouping users and defining clusters to increase the probability of the successful superposition decoding process. The performance of the proposed clustering algorithm is investigated in hybrid NOMA system and compared with the conventional orthogonal multiple access (OMA) scheme.

Deep Learning-Based Modulation Detection for NOMA Systems

  • Xie, Wenwu;Xiao, Jian;Yang, Jinxia;Wang, Ji;Peng, Xin;Yu, Chao;Zhu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.658-672
    • /
    • 2021
  • Since the signal with strong power need be demodulated first for successive interference cancellation (SIC) receiver in non-orthogonal multiple access (NOMA) systems, the base station (BS) need inform the near user terminal (UT), which has allocated higher power, of the far UT's modulation mode. To avoid unnecessary signaling overhead of control channel, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, the deep residual network is built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and lose their real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed.

On Improved Outage Probability of Correlated Superposition Coding/non-SIC NOMA (상관 관계 중첩 코딩/non-SIC 비직교 다중접속의 향상된 Outage 확률에 관해)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.611-616
    • /
    • 2021
  • This paper investigates the improved outage probability of correlated superposition coding(CSC)/non-successive interference cancellation(SIC) non-orthogonal multiple access(NOMA) scheme. For this, first, we calculate the outage probability of the conventional independent superposition coding(ISC)/SIC NOMA scheme. Then, simulations demonstrate that the outage probability of CSC/non-SIC NOMA improves greatly, with respect to that of conventional ISC/SIC NOMA. As a result, CSC/non-SIC NOMA schemes could be a promising technique in 5G networks, especially with such improved outage probability.

Analysis of Achievable Data Rate under BPSK Modulation: CIS NOMA Perspective (BPSK 변조의 최대 전송률 분석: 상관 정보원의 비직교 다중 접속 관점에서)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.995-1002
    • /
    • 2020
  • This paper investigates the achievable data rate for non-orthogonal multiple access(NOMA) with correlated information sources(CIS), under the binary phase shift keying(BPSK) modulation, in contrast to most of the existing NOMA designs using continuous Gaussian input modulations. First, the closed-form expression for the achievable data rate of NOMA with CIS and BPSK is derived, for both users. Then it is shown by numerical results that for the stronger channel user, the achievable data rate of CIS reduces, compared with that of independent information sources( IIS). We also demonstrate that for the weaker channel user, the achievable data rate of CIS increases, compared with that of IIS. In addition, the intensive analyses of the probability density function(PDF) of the observation and the inter-user interferennce(IUI) are provided to verify our theoretical results.

Outage Performance of Uplink NOMA Systems with CDF Scheduling (CDF 스케쥴링을 적용한 상향링크 NOMA 시스템의 오수신 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.37-42
    • /
    • 2021
  • NOMA (Non-orthogonal multiple Access) system has been focused on the next generation cellular system for higher spectral efficiency. However, this requires user scheduling as the NOMA system is a multi-user system which accesses simultaneously. There are two representative scheduling schemes, proportionate scheduling (FP) and cumulative distribution function (CFD) scheduling. The PF scheduling is applied, the cell edge user is hard to obtain a transmit opportunity. Recently, CDF scheduling is obviously noted that it offers the same possibility of transmission for a user regardless of the location in a cell. We consider an uplink NOMA system with CDF scheduling, and obtain the channel access probabilities, the outage probabilities of the system with different number of users and different kinds of weights through simulation. The results indicate that the likelihood of each user accessing the channel is the same and the probability of failure decreases as the number of users increases. We found that the effect of the probability of failure is negligible as the weight of the cell edge user increases.

Achievable Rate Analysis for Opportunistic Non-orthogonal Multiple Access-Based Cooperative Relaying Systems

  • Lee, In-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.630-642
    • /
    • 2017
  • In this paper, we propose the opportunistic non-orthogonal multiple access (NOMA)-based cooperative relaying system (CRS) with channel state information (CSI) available at the source, where CSI for the source-to-destination and source-to-relay links is used for opportunistic transmission. Using the CSI, for opportunistic transmission, the source instantaneously chooses between the direct transmission and the cooperative NOMA transmission. We provide an asymptotic expression for the average achievable rate of the opportunistic NOMA-based CRS under Rayleigh fading channels. We verify the asymptotic analysis through Monte Carlo simulations, and compare the average achievable rates of the opportunistic NOMA-based CRS and the conventional one for various channel powers and power allocation coefficients used for NOMA.

Impacts of Non-Uniform Source on BER for SSC NOMA (Part I): Optimal MAP Receiver's Perspective

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.39-47
    • /
    • 2021
  • Lempel-Ziv coding is one of the most famous source coding schemes. The output of this source coding is usually a non-uniform code, which requires additional source coding, such as arithmetic coding, to reduce a redundancy. However, this additional source code increases complexity and decoding latency. Thus, this paper proposes the optimal maximum a-posteriori (MAP) receiver for non-uniform source non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC). First, we derive an analytical expression of the bit-error rate (BER) for non-uniform source NOMA with SSC. Then, Monte Carlo simulations demonstrate that the BER of the optimal MAP receiver for the non-uniform source improves slightly, compared to that of the conventional receiver for the uniform source. Moreover, we also show that the BER of an approximate analytical expression is in a good agreement with the BER of Monte Carlo simulation. As a result, the proposed optimal MAP receiver for non-uniform source could be a promising scheme for NOMA with SSC, to reduce complexity and decoding latency due to additional source coding.

Impact of Rician Fading on BER Performance on Intelligent Reflecting Surface NOMA Towards 6G Systems

  • Chung, Kyuhyuk
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.307-312
    • /
    • 2022
  • The commercialization of the fifth generation (5G) mobile systems has quested enabling technologies, such as intelligent reflecting surface (IRS) transmissions, towards the sixth generation (6G) networks. In this paper, we present a bit-error rate (BER) performance analysis on IRS transmissions in 5G non-orthogonal multiple access (NOMA) networks. First, we derive a closed-form expression for the BER of IRS-NOMA transmissions under Rician fading channels. Then, by Monte Carlo simulations, we validate the proposed approximate BER expression, and show numerically that the derived BER expression is in good agreement with Monte Carlo simulations. Furthermore, we also analyze the BER performance of IRS-NOMA networks under Rician fading channels with different numbers of reflecting elements, and demonstrate that the performances improve monotonically as the number of reflecting devices increases.