• Title/Summary/Keyword: NO assay

Search Result 2,931, Processing Time 0.031 seconds

Effects of White Ginseng-Ejung-tang Acupuncture Solution on Nitric Oxide and Hydrogen Peroxide Production in LPS-induced Mouse Macrophages (백약(白藥)이 포함된 이중탕(理中湯)약침액의 LPS로 유발된 마우스 대식세포의 nitric oxide 및 hydrogen peroxide 생성에 미치는 영향)

  • Lee, Ji-Young;Kim, Young-Jin;Park, Wan-Su
    • Korean Journal of Acupuncture
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Objectives : The purpose of this study is to investigate effects of White Ginseng-Ejung-tang acupuncture solution (EJ) on nitric oxide (NO) and of hydrogen peroxide production in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Methods : Cell viability was measured by modified MTT assay. NO production was measured by Griess reagent assay. Hydrogen peroxide production was measured by dihydrorhodamine 123 (DHR) assay. Significant differences were examined by using a Student's t-test. Results : The results of the experiment are as follows. 1. EJ did not show cell toxicity against RAW 264.7 cells for 24 hr incubation at the concentrations of up to $200\;{\mu}g$/mL in RAW 264.7 cells. 2. EJ significantly inhibited NO production for 24 hr incubation in RAW 264.7 cells (p <0.05). 3. EJ significantly inhibited the LPS-induced production of NO for 24 hr incubation in RAW 264.7 cells (p <0.05). 4. EJ significantly inhibited the LPS-induced production of hydrogen peroxide for 16, 24, 40, 48, 64, and 72 hr incubation in RAW 264.7 cells (p <0.05). Conclusions : These results suggest that EJ has an anti-inflammtory property related with its inhibition of NO and hydrogen peroxide production in LPS-induced macrophages.

In Vitro Genotoxicity Assessment of a Novel Resveratrol Analogue, HS-1793

  • Jeong, Min Ho;Yang, Kwangmo;Lee, Chang Geun;Jeong, Dong Hyeok;Park, You Soo;Choi, Yoo Jin;Kim, Joong Sun;Oh, Su Jung;Jeong, Soo Kyung;Jo, Wol Soon
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.211-220
    • /
    • 2014
  • Resveratrol has received considerable attention as a polyphenol with various biological effects such as anti-inflammatory, anti-oxidant, anti-mutagenic, anti-carcinogenic, and cardioprotective properties. As part of the overall safety assessment of HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, we assessed genotoxicity in three in vitro assays: a bacterial mutation assay, a comet assay, and a chromosomal aberration assay. In the bacterial reverse mutation assay, HS-1793 did not increase revertant colony numbers in S. typhimurium strains (TA98, TA100, TA1535 and TA1537) or an E. coli strain (WP2 uvrA) regardless of metabolic activation. HS-1793 showed no evidence of genotoxic activity such as DNA damage on L5178Y $Tk^{+/-}$ mouse lymphoma cells with or without the S9 mix in the in vitro comet assay. No statistically significant differences in the incidence of chromosomal aberrations following HS-1793 treatment was observed on Chinese hamster lung cells exposed with or without the S9 mix. These results provide additional evidence that HS-1793 is non-genotoxic at the dose tested in three standard tests and further supports the generally recognized as safe determination of HS-1793 during early drug development.

Evaluation of Mutagenicity with Gamgung-tang Using Host-Mediated Assay (Host-Mediated Assay를 이용한 감궁탕의 돌연변이원성 평가)

  • Shon, Yun-Hee;Kim, Cheorl-Ho;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.93-96
    • /
    • 2005
  • Mutagenicity of Gamgung-tang (GGT) was tested using in vitro S-9 mixture in vitro host-mediated assay with Salmonella typhimurium. In the previous reports, GGT was tested for the safety using Ames(-S-9), Bacillus subtilis Rec, and umu gene expression mutagenicity tests. Mutagenic activity in any assays we tested was not found. In this report, we further investigated safety of GGT after metabolic activation in vivo. Ames test with S-9 mixture and host-mediated assay with Salmonella typhimurium TA98 were used to identify metagenic property of GGT. GGT was administered 3 times with i.m. to Balb/c mice did not induced mutagenic effect in Salmonella typhimurium TA98 recovered from the liver after 3.5h with i.p. treatment. Over the entire dose range $(3{\sim}150mg/mouse)$ tested no toxicity was detected to the bacterial cells. These results suggest that there was no DNA damage and mutagenicity by GGT.

DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

  • Lee, Yongdeok;Park, Chang Je;Kim, Ho-Dong;Song, Kee Chan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.921-928
    • /
    • 2013
  • A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (II), a Pyrethroid Insecticide, Fenpropathrin

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Hyun-Joo;Ryu, Eun-Kyoung;Lee, Soo-Young;Jung, Sang-Oun;Youn, Ji-Youn;Kim, Min-Hee;Kwon, Oh-Seung
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.251-257
    • /
    • 1996
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is subject of great concern at present. In this respect, the genetic toxicity of fenpropathrin ((RS)-.alpha.-cyano-3-phenoxybenzyl-2,2,3,3-tetramethyl cyclopropane carboxylate, CAS No.:39514-41-8), a pyrethroid insecticide, was evaluated in bacterial gene mutation system, chromosome aberration in mammalian cell system and in vivo micronucleus assay with rodents. In bacterial gene mutation assay, no mutagenicity of fenpropathrin (62-$5000\mug/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activaton system. In mammalian cell system using chinese hamster lung fibroblast, no clastogenicity of fenpropathrin was also observed both in the absence and in the presence of metabolic activation system in the concentration range of $7-28\mug/ml$. And also, in vivo micronucleus assay using mouse bone marrow cells, fenpropathrin also revealed no mutagenic potential in the dose range of 27-105 mg/kg body weight of fenpropathrin (i.p.). Consequently, no mutagenic potential of fenpropathrin was observed in vitro bacterial, mammalian mutagenicity systems and in vivo micronucleus assay in the dose ranges used in this experiment.

  • PDF

Neuroprotective Effect of Aqueous Extract of Polygala tenuifolia Willdenow on Nitric Oxide-induced Apoptosis in SK-N-MC Cells

  • Kim, Young-Giun;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.55-65
    • /
    • 2010
  • Background: Nitric oxide (NO) is a reactive free radical gas and a messenger molecule. NO has many physiological functions, but excessive NO production induces neurotoxicity. Objective: The present study investigated whether the aqueous extract of Polygala tenuifolia Willdenow possesses a protective effect on NO-induced apoptosis in human neuroblastoma cell line SK-N-MC. Method: For this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and caspase-3 enzyme assay were performed. Result: Sodium nitroprusside (SNP) exposure significantly decreased the viability of cells. The cells treated with SNP exhibited several apoptotic features such as increasing of Bax expression, caspase-3 enzyme activity and inhibiting of Bcl-2 expression. On the other hand, the viability of cells pre-treated with the aqueous extract of Polygala tenuifolia Willdenow was increased dose-dependently. The cells pre-treated for 1 h with the aqueous extract of Polygala tenuifolia Willdenow followed by treatment with SNP showed a decreased occurrence of apoptotic features like decreasing Bax expressions, caspase-3 enzyme activity and increasing Bcl-2 expressions. The aqueous extract of Polygala tenuifolia Willdenow reduced apoptotic cell death in neuroblastoma cell line SK-N-MC through the inhibition of Bax-dependent caspase-3 activation and the increasing of Bcl-2 expression. Conclusion: Based on the present results, it is possible that Polygala tenuifolia Willdenow has therapeutic value for the treatment of a variety of NO-induced brain diseases.

Study on Mutagenicity of DehydroevodiamineㆍHCl(DHED) (치료제 DehydroevodiamineㆍHCl(DHED)의 변이원성 연구)

  • 성이숙;정성윤;정주연;채규영;진미령;최봉웅;장병모;김대경
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.208-212
    • /
    • 2002
  • Dehydroevodiamine HCl (DHED), which is a component separated from Evodia rutaecarpa Bentham, has novel anticholinesterase and antiamnesic activities in the scopolamine-induced amnesia model. Several studies suggest that DHED might be an effective drug for the Alzheimer's disease and the vascular type of dementia. In order to evaluate the mutagenic potential of DHED, Salmonella typhimurium reversion assay, chromosomal aberration test on Chinese hamster lung cells, in vivo micronucleus assay using mouse bone marrow cells, and comet assay were performed. DHED did not increase the number of revertant in the reverse mutation test using Salmonella typhimurium TA1535, TA1537, TA98, TA100. DHED HCl, at concentration of 5 and 10 $\mu\textrm{g}$/mι, increased the number of chromosome aberrated Chinese hamster lung cells with 5 and 10%, respectively. In mouse micronucleus test, no significant increase in the occurrence of micronucleated polychromatic erythrocyte was observed in ICR mice orally administered with DHED. DHED was tested for ability to induce genotoxic effect in L5178Y cells (mouse lymphoma cells) using the single cell gel electrophoresis assay (comet assay). In comet assay, tail moment did not increase in L5178Y cells treated with 10, 100, 300 $\mu$M DHED.

Clinical Usefulness of Helicobactor pylori Ag Stool Test (Immunochromatographic Assay) for Diagnosis of H. pylori Infection (Helicobacter pylori 감염진단에 있어 H. pylori Ag Stool 검사 (면역크로마토그라피법)의 임상적 유용성)

  • Seo, Seol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • The aim of this study was to assess the Clinical Usefulness of Helicobacter pylori Stool Antigen (HpSA) immunochromatographic assay for the diagnosis of H. pylori infection. In this study, we had compared HpSA-immunochromatographic assay with CLO test and UBT test. From a total of 140 patients (M:F=88:52) with upper endoscopy, biopsy specimens were obtained for CLO test. Stool specimens was collected from all patients and tested using a HpSA-immunochromatic assay. H. pylori infection status was defined as infected if the results of both CLO test and UBT test were positive. CLO test and UBT test findings showed that 92 patients were H. pylori positive and 48 patients were H. pylori negative. According to this definition, the sensitivity, specificity, and positive or negative predictive value (PPV, NPV) of HpSA-immunochromatographic assay were 97.8%, 100%, 100%, and 96%, respectively. Cross reactivity test of HpSA-immunochromatographic assay were performed with 10 enteric bacteria strains in fecal habitat, and there were no false positive reaction. We evaluated the usefulness of HpSA assay for eradication therapy with 10 of 92 H. pylori positive patients, positive results of them at pre-eradication therapy were converted to negative at post-eradication. The HpSA-immunochromatographic assay is a highly sensitive and specific non-invasive diagnostic method for detection of H. pylori infection, a useful diagnostic method for H. pylori in post eradication stage.

  • PDF

Anti-inflammatory Effects of Smilacis Glabrae Rhizoma in Raw 264.7 Cells (토복령(土茯笭)의 Raw 264.7 세포에 대한 항염효과)

  • Oh, Sung-Won;Kim, Byoung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.288-297
    • /
    • 2009
  • Objective : Inflammatory cytokines have a close relationship to insulin dependent diabetes mellitus (IDDM). The inhibitory effect of Smilacis Glabrae Rhizoma (SGR) were examined on production of nitric oxide (NO), prostaglandin $E_2$ $(PGE_2)$, synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and NF-${\kappa}$B activation in Raw 264.7 cells. Methods: Raw 264.7 cells were pretreated with SGR(20, 50, 100 ${\mu}g$/ml), and then cultured with lipopolysaccharides (LPS). Cell viability was measured by MTT assay; inhibition of NO, $PGE_2$, and TNF-${\alpha}$ production were measured by Griess reagent and enzyme-linked immunosorbent assay(ELISA). Induction of COX-2 and iNOS were determined by western blotting analysis. Inhibition of NF-${\kappa}$B was measured by immunofluorescence assay (IFA). Results: SGR inactivated NF-${\kappa}$B, and inhibited the production of NO, iNOS, and $PGE_2$. Inhibition of COX-2 and TNF-${\alpha}$ could not be confirmed. Conclusions: From the above result. SGR was found to have an anti-inflammatory effect of inhibition of NO, iNOS, and $PGE_2$ production via inhibition of NF-${\kappa}$B.

  • PDF

Genotoxicological Safety Evaluation of Crude Antifungal Compounds Produced by Bacillus subtilis SN7 (Bacillus subtilis SN7이 생성한 조항균 물질의 유전독성학적 안정성평가)

  • Chang, Hae-Choon;Koh, Sang-Bum;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.1
    • /
    • pp.131-141
    • /
    • 2017
  • This study was carried out to perform genotoxicological safety evaluation of crude antifungal compounds produced by Bacillus subtilis SN7 (B. subtilis SN7) isolated from meju. Bacterial reverse mutation assay with Salmonella typhimurium TA98, TA100, TA1535, and TA1537 or Escherichia coli WP2uvrA in the presence and absence of the S9 metabolic activation system was carried out, and the crude antifungal compounds produced by B. subtilis SN7 showed no significant increase in the number of revertant colonies. In the chromosomal aberration tests using Chinese hamster lung (CHL) cells, sample treatment groups showed no increase in the frequency of chromosome aberrations compared to the negative control group. Furthermore, in the micronucleus formation test, the crude antifungal compounds showed no significance increase in the frequency of polychromatic erythrocytes with micronuclei. These results suggest that the crude antifungal compounds produced by B. subtilis SN7 isolated from meju showed no harmful genotoxic effects.