• Title/Summary/Keyword: NO assay

Search Result 2,927, Processing Time 0.036 seconds

Distribution of the Muscarinic Cholinergic Receptors and Characterization in the Brain of Wistar Rats and Spontaneously Hypertensive Rats (SHR Strain) by Digital Autoradiography (Digital Autoradiographic System을 이용한 선천성고혈압에서의 Muscarinic Cholinergic Receptor 분포 및 특성)

  • Sohn, In;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.28-34
    • /
    • 1993
  • Using in vitro autoradiography with a digital autoradiography system and radioreceptor assay, the distribution and the binding characteristics of the muscarinic cholinergic receptors (mAChR) were studied in regions of rat brain. Radioreceptor assay revealed that mAChR could be measured with saturation binding assay in the brain and heart homogenates: No difference in Kd or Bmax of the brain or heart was found between the normal Wistar rats and SHR rats. Specific binding of $^3H$ quinuclidinyl benzilate (QNB) increased and saturation was reached by 2 hours after incubation with slide-mounted brain tissue. The distribution of mAChR was heterogeneous along the fields of brain. Affinity (Kd) of mAChR was not different significantly among cortex, hippocampus and caudate-putamen. No difference was found between normal rats and SHR strain. More receptors (Bmax) were found in the cortex and hippocampus than in the caudate-putamen in normal rats. More receptors were found in the cortex and caudate-putamen in SHR rats than in normal rats. Radioreceptor assay and digital autoradiographic analysis of affinity and number of mAChR gave the same results. With the above findings, we concluded that we could use digital autoradiographic system with $^3H$-QNB in the characterization of mAChR of rats and that the cortex and caudate-putamen of SHR strain rats have more receptors than those of normal rats.

  • PDF

The Effects of Injinchunggantang-derivative on Cell Viability, Cell Cycle Progression and Apoptosis of Hepatocytes (인진청간탕가미방(茵陳淸肝湯加味方)이 간세포활성(肝細胞活性), 세포주기(細胞週期) 및 APOPTOSIS에 미치는 영향(影響))

  • Hong, Sang-Hoon;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.337-372
    • /
    • 1998
  • To evaluate the effects of Injinchunggantang-derivative on cell viability, cell cycle progression, and apoptosis, MTT assay, cell cycle analysis, Cpp32 protease assay, DNA fragnemtation assay, quantitative RT-PCR, and Western blotting were performed. The results were as followes. In MTT assay, etoposide+Injinchunggantang-derivative-treated cells as well as Injinchunggantang-derivative-treated cells showed higher viability than etoposide-treated cells with no time-concentration-dependence, which implied that Injinchunggantang-derivative has hepato-protective effect Cell cycle analysis showed that Injinchunggantang-derivative has no significant effect on the cell cycle. Cpp32 protease assav and DNA fragmentation assay Injinchunggantang-derivative carry inhibitory effects on apoptosis induction. It was suggested that Injinchunggantang-delivative might regulate the cell cycle, in particular $G_1$ checkpoint by blocking p53 and Watl pathway. Injinchunggantang-derivative inhibited the mRNA expressions of Cpp32, Fas, and Bcl-2, which could result in inhibition of apoptosis. These results imply that Injinchunggantang-derivative increases hepatocyte viability, and protects hepatocyte from damage by regulating the expression of genes associated with cell cycle and apoptosis, which explains the mechanism of the clinical effect of Injinchunggantang-derivative on liver diseases.

  • PDF

Protective Effect of Red Ginseng and Paeonia radix against Nitric Oxide-Induced Apoptosis in Human Neuroblastoma SK-N-MC cells

  • Park, Young-Hoi;Song, Yunk-Yung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.198-210
    • /
    • 2007
  • Objectives : Nitric oxide(NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive release NO of induces neurotoxicity. We investigated whether a mixture of red ginseng and paeonia radix prossesses a protective effect against sodium nitroprusside(SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. Methods : We performed 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, 4,6-diamidino-2-phenylindole(DAPD) staining, terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick end labeling(TUNEL)assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction(RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-HFC cells. Result : MTT assay showed that SNP treatment significantly reduced the viabilities of cells and that pre-treatment with the red ginseng and paeonia radix mixture alleviated SNP-induced cytotoxicity. The cells treated with SNP exhibited several apoptotic features, while those pre-treated fir 1 h with the mixture of red ginseng and paeonia radix 1 h prior to SNP expose showed reduced apoptotic features. In addition, the cells pre-treated with the red ginseng and paeonia radix mixture for 1 h prior to SNP expose increased bel-2 expressions, decreased Bax expressions, and decreased caspase-3 enzyme activity. Conclusions : These results show that the red ginseng and paeonia radix mixture exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells.

  • PDF

Genotoxicological Safety of High-Dose Irradiated Porridges (고선량 조사된 시판 분말죽의 유전독성학적 안전성평가)

  • Kang, Il-Jun;Kang, Young-Hee;Chung, Cha-Kwon;Oh, Sung-Hoon;Lee, Ju-Woon;Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.261-266
    • /
    • 2005
  • Gamma irradiation at 30 kGy was applied to porridge to evaluate its possible genotoxicity. The genotoxicity of irradiated porridge was evaluated by Salmonella Typhimurium reversion assay, chromosomal aberration test and in vivo micronucleus assay. The results were negative in the bacterial reversion assay with S. Typhimurium TA98, TA100, TA1535 and TA1537. No mutagenicity was detected in the assay both with and without metabolic activation. In chromosomal aberration tests with CHL cells and in vivo mouse micronucleus assay, no significant difference in the incidences of chromosomal aberration and micronuclei was observed between nonirradiated and 30 kGy-irradiated porridge. These results indicate that porridge irradiated at 30 kGy did not show any genotoxic effects under these experimental conditions.

Anti-inflammatory mechanism and Anti-oxidant Effects of Naesohwangryun-tang in LPS-Stimulated RAW 264.7 Macrophage Cells (LPS로 유도된 RAW 264.7 대식세포주에서 내소황련탕(內疎黃連湯)의 항염증 기전 및 항산화 효능 연구)

  • Jeon, Seon-Hong;Kim, Tae-Jun;Kim, Yong-Min
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.33 no.2
    • /
    • pp.100-111
    • /
    • 2020
  • Objectives : The aim of experiment is to examine anti-inflammatory effect and anti-oxidant effect of Naesohwangryun-tang (NSHRT) in LPS-stimulated RAW264.7 macrophage cells. Methods : In the present study, The cell viability was performed by MTT assay. Nitric oxide (NO) production and prostaglandin E2 (PGE2) synthesis were performed by NO assay and ELISA KIT. The anti-oxidant effect was performed by DPPH and ABTS radical scavenging activity. The inhibitory effects of pro-inflammatory mediators and cytokines were confirmed by realtime PCR and western blotting. Results : NSHRT was no cytotoxicity at treated group. NO and PGE2 production were inhibited compared to the LPS treated group and also mRNA and protein expressions were significantly decreased compared to the LPS treated group. Conclusions : According to the above experiments, we confirmed that NSHRT has anti-inflammatory and anti-oxidant effects. It is suggested that NSHRT is potential ingredient of skin diseases.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (X) -In vivo Bone Marrow Micronucleus Assay of 17 Synthetic Chemicals In Mice-

  • Ryu, Jae-Chun;Jeon, Hee-Kyung
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • To validate and to estimate the chemical hazard playa very important role to environment and human health. The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this resepct, the clastogenicity of 17 synthetic chemicals was evaluated with bone marrow micronucleus assay in mice. The positive control, mitomycin C (2 mg/kg, i.p.) revealed significant induction ratio of percentage of micronucleated polychromatic erythrocytes/1,000 polychromatic erythrocytes compared to solvent controls. The chemicals with relatively high $LD_{50}$ value such as allyl alcohol (CAS No. 107-18-6), 2,4-pentanedione (CAS No. 123-54-6) and 4-chloro-3,5-dimethylphenol (CAS No. 88-04-0) revealed no significant induction of micronucleated polychromatic erythrocytes in mice. From this results, 17 synthetic chemicals widely used in industry have revealed no significant micronucleus induction of clastogenicity in mice in this experiment.

  • PDF

The Genotoxicity Study of Molinate, an Herbicide, in Bacterial Reversion, in vitro and in vivo Mammalian System

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2006
  • The controversy on genotoxicity of molinate, an herbicide, has been reported in bacterial system, and in vitro and in vivo mammalian systems. To clarify the genotoxicity of molinate, we performed bacterial gene mutation test, in vitro chromosome aberration and mouse lymphoma $tk^{+/-}$ gene assay, and in vivo micronucleus assay using bone marrow cells and peripheral reticulocytes of mice. In bacterial gene mutation assay, no mutagenicity of molinate ($12-185{\mu}g/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activation system. The clastogenicity of molinate was observed in the presence ($102.1-408.2\;{\mu}g/mL$) of metabolic activation system in mammalian cell system using Chinese hamster lung fibroblast. However, no clastogenicity was observed in the absence ($13.6-54.3\;{\mu}g/mL$) of metabolic activation system. It is suggested that the genotoxicity of molinate was derived some metabolites by metabolic activation. Molinate was also subjected to mouse lymphoma L5178Y $tk^{+/-}$ cells using microtiter cloning technique. In the absence of S-9 mixture, mutation frequencies (MFs) were revealed $1.4-1.9{\times}10^{-4}$ with no statistical significance. However, MFs in the presence of metabolic activation system revealed $3.2-3.4{\times}10^{-4}$ with statistical significance (p<0.05). In vivo micronucleus (MN) assay using mouse bone marrow cells, molinate revealed genotoxic potential in the dose ranges of 100-398 mg/kg of molinate when administered orally. Molinate also subjected to acridine orange MN assay with mouse peripheral reticulocytes. The frequency of micronucleated reticulocytes (MNRETs) induced 48 hr after i.p. injection at a single dose of 91, 182 and 363 mg/kg of molinate was dose-dependently increased as $10.2{\pm}4.7,\;14.6{\pm}3.9\;and\;28.6{\pm}6.3\;(mean{\pm}SD\;of\;MNRETs/2,000\;reticulocytes)$ with statistical significance (p<0.05), respectively. Consequently, genotoxic potential of molinate was observed in in vitro mammalian mutagenicity systems only in the presence of metabolic activation system and in vivo MN assay using both bone marrow cells and peripheral reticulocytes in the dose ranges used in this experiment. These results suggest that metabolic activation plays a critical role to express the genotoxicity of molinate in in vitro and in vivo mammalian system.