• Title/Summary/Keyword: NO/sub x/ Reduction

Search Result 132, Processing Time 0.023 seconds

Effect of Intermittent Plasma Discharge on the Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides (간헐적 플라즈마 방전이 질소산화물의 탄화수소 선택적 촉매환원에 미치는 영향)

  • Kyeong-Hwan Yoon;Y. S. Mok
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-514
    • /
    • 2023
  • The selective catalytic reduction (SCR) of nitrogen oxides (NOx) was investigated in a catalyst (Ag/γ-Al2O3) packed dielectric barrier discharge plasma reactor. The intermittent generation of plasma in the catalyst bed partially oxidized the hydrocarbon reductant for NOx removal to several aldehydes. Compared to using the catalyst alone, higher NOx conversion was observed with the intermittent generation of plasma due to the formation of highly reductive aldehydes. Under the same operating conditions (temperature: 250 ℃; C/N: 8), the NOx reduction efficiencies were 47.5%, 92%, and 96% for n-heptane, propionaldehyde, and butyraldehyde, respectively, demonstrating the high NOx reduction capability of aldehydes. To determine the optimal condition for intermittent plasma generation, the high voltage on/off cycle was adjusted from 0.5 to 3 min. The NOx reduction performance was compared between continuous and intermittent plasma generation on the same energy density basis. The highest NOx reduction efficiency was achieved at 2-min high voltage on/off intervals. The reason that the intermittent plasma discharge exhibited higher NOx reduction efficiency even at the same energy density, compared to the continuous plasma generation case, is that the intermediate products, such as aldehydes generated from hydrocarbon, were more efficiently utilized for the reduction of nitrogen oxides.

The Reaction Characteristics of NOx/N2O and NH3 in Crematory Facility SCR Process with Load Variation (부하변동이 큰 화장시설 SCR 공정에서 NOx/N2O 및 NH3 동시 저감 특성 연구)

  • Park, Poong Mo;Lee, Ha Young;Yeo, Sang-Gu;Yoon, Jae-Rang;Dong, Jong In
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.605-615
    • /
    • 2017
  • Efficient simultaneous reduction conditions for $NO_x$ and $NH_3$-slip was investigated in SCR (Selective Catalytic Reduction) process with load variation by applying dual catalysts (SCR catalyst, $NH_3$ decomposition catalyst) system. $N_2O$ formation characteristics were analyzed to look into possible undesirable reaction pathways. In the experiments of catalyst characteristics, various operational variables were tested for the combined catalytic system, such as $NH_3/NO_x$ ratio, temperature, oxygen concentration and $H_2O$. The reaction characteristics of $NO_x$, $NH_3$ and $N_2O$ were analyzed and optimal conditions could be evaluated for the combustion facility with varied load. In terms of $NO_x/NH_3$ simultaneous reduction and $N_2O$ formation suppression, optimal condition was considered NSR 1.2 and temperature $300^{\circ}C$. At this operational condition, $NO_x$ conversion was 98%, $NH_3$ reduction efficiency was 95%, generated $N_2O$ concentration 9.5 ppm with inlet $NO_x$ concentration of 100 ppm. In $NH_3-SCR$ process with $NH_3$ decomposition catalyst, $NO_x$ and $NH_3$ can be considered to be reduced simultaneously at limited conditions. The results of this study may be utilized as basic data at facilities requiring simultaneous $NO_x$ and $NH_3$ reduction for facilities with load variation.

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.

NOx Reduction Characteristics of Ship Power Generator Engine SCR Catalysts according to Cell Density Difference (선박 발전기관용 SCR 촉매의 셀 밀도차에 따른 NOx 저감 특성)

  • Kyung-Sun Lim;Myeong-Hwan Im
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1209-1215
    • /
    • 2022
  • The selective catalytic reduction (SCR) is known as a very efficient method to reduce nitrogen oxides (NOx) and the catalyst performs reduction from nitrogen oxides (NOx) to nitrogen (N2) and water vapor (H2O). The catalyst, which is one of the factors determining the performance of the nitrogen oxide (NOx) ruduction method, is known to increase catalyst efficiency as cell density increases. In this study, the reduction characteristics of nitrogen oxides (NOx) under various engine loads investigated. A 100CPSI(60Cell) catalysts was studied through a laboratory-sized simulating device that can simulate the exhaust gas conditions from the power generation engine installed in the training ship SEGERO. The effect of 100CPSI(60Cell) cell density was compared with that of 25.8CPSI(30Cell) cell density that already had NOx reduction data from the SCR manufacturing. The experimental catalysts were honeycomb type and its compositions and materials of V2O5-WO3-TiO2 were retained, with only change on cell density. As a result, the NOx concentration reduction rate from 100CPSI(60Cell) catalyst was 88.5%, and IMO specific NOx emission was 0.99g/kwh satisfying the IMO Tier III NOx emission requirement. The NOx concentration reduction rate from 25.8CPSI(30Cell) was 78%, and IMO specific NOx emission was 2.00g/kwh. Comparing the NOx concentration reduction rate and emission of 100CPSI(60Cell) and 25.8CPSI(30Cell) catalysts, notably, the NOx concentration reduction rate of 100CPSI(60Cell) catalyst was 10.5% higher and its IMO specific NOx emission was about twice less than that of the 25.8CPSI(30Cell) catalysts. Therefore, an efficient NOx reduction effect can be expected by increasing the cell density of catalysts. In other words, effects to production cost reduction, efficient arrangement of engine room and cargo space can be estimated from the reduced catalyst volume.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

The Methods Calculating the Reduction Efficiency of Nitrogen Oxide for the Facilities Including the Low NOx Burners (저녹스 버너 설치 시설의 질소산화물 저감 효율 산정 방법)

  • Lee, Ki Yong;Talukder, Niladri
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.295-296
    • /
    • 2015
  • We presented the methods calculating the reduction efficiency of nitrogen oxide for the low $NO_x$ burner as the pollution prevention facilities. The standard $NO_x$ concentration was used on the emission factor of LNG, $3.7g/m^3$. The $NO_x$ reduction efficiency based on the $NO_x$ concentration was presented and the relationships between the $NO_x$ concentration and the emission factor or the specific heat emission factor were derived. These results could be accurately reflected on calculating the amount of the nitrogen oxide emissions. In addition, according to the arrangement of the low $NO_x$ burners the methods of applying their $NO_x$ reduction efficiency were proposed. The $NO_x$ reduction efficiency for the facilities consisting of the low $NO_x$ burners and the non-low $NO_x$ burners could be estimated with information about the reduction efficiency of each low $NO_x$ burners, the fuel consumption rate, and the heating value of fuel.

  • PDF

Analyzing the Changes in O3 Concentration due to Reduction in Emissions in a Metropolitan Area : A Case Study of Busan during the Summer of 2019 (대도시 지역의 배출량 저감에 따른 O3 농도 변화 분석: 부산광역시 2019년 여름 사례 )

  • Hyeonsik Choe;Wonbae Jeon;Dongjin Kim;Chae-Yeong Yang;Jeonghyeok Mun;Jaehyeong Park
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.503-520
    • /
    • 2023
  • In this study, numerical simulations using community multiscale air quality (CMAQ) were conducted to analyze the change in ozone (O3) concentration due to the reduction in nitrogen oxides (NOx)andvolatile organic compounds (VOCs) emissions in Busan. When the NOx and, VOCs emissions were reduced by 40% and, 31%, respectively, the average O3 concentration increased by 4.24 ppb, with the highest O3 change observed in the central region (4.59 ppb). This was attributed to the decrease in O3 titration by nitric oxide (NO) due to the reduction of NOx emissions in Busan, which is classified as a VOCs-limited area. The distribution of O3 concentration changes was closely related to NOx emissions per area, and inland emissions were highly correlated with daily maximum concentrations and 8-h average O3 concentrations. Contrastingly, the effect of emission reduction depended on the wind direction. This suggests that the emission reduction effects may vary depending on the environmental conditions. Further research is needed to comprehensively analyze the emission reduction effects in Busan.

DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst (Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.328-336
    • /
    • 2005
  • In order to remove the NO contained in exhaust gas by the non-selective catalyst reduction method, the catalysts were prepared by varing the loading amount of Ag and V into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ using the prepared catalysts was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations using. The influence of the catalyst structure on $NO_x$ conversion was studied through the analysis of the physical properties of the prepared catalysts. In the case of $AgV/{\gamma}-Al_2O_3$ catalyst, the $NO_x$ conversion was lower than that of $Ag/{\gamma}-Al_2O_3$ at higher temperatures but higher than that of $Ag/{\gamma}-Al_2O_3$ at lower temperatures. Even though $SO_2$ was contained in the reaction gas, the $NO_x$ conversion did not decrease. Based on the analysis including XRD, XPS, TPR, and UV-Vis DRS before and after the experiments, the experimental results were examined. The results indicated that, $NO_x$ conversion decreased at higher temperatures since Ag oxide could not be maintained well due to the addition of V, whereas it increased at temperatures lower than $300^{\circ}C$ due to the catalytic action of V.

Performance Management of a DeNOx System for Stationary Sources and Regeneration Strategies of DeNOx Catalysts (고정원 탈질시스템의 성능관리와 탈질촉매 재생전략)

  • Kim, Moon Hyeon
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.141-153
    • /
    • 2016
  • Numerous stationary NOx emission sources have employed a suitable deNOx technology that is typically selective catalytic reduction (SCR) of NOx by NH3 over V2O5/TiO2-based catalysts with on-demand monolithic structures. These structured catalysts undergo a time-on-deterioration of deNOxing activity on site. Thus, we need more efficient, more deactivation-tolerant, more economic deNOx systems and for which, their performance management is essential. This review has covered details of strategies to successfully manage the performance of SCR catalysts and timely replace them to new or rejuvenated ones. Key considerations to maintain the catalyst activity will be reviewed. Details of the sequential addition of new catalysts and the replacement of life-end catalysts and their regeneration will be discussed with general guidances to determine the time for such a replacement. Finally, a better way to get more economic approaches to deNOx system management will be proposed here.

Flow Analysis of PM/NOX Reduction System for Emergency Generator (비상발전기용 PM/NOX 저감장치의 유동특성 연구)

  • Bang, Hyo-Won;Park, Gi-Young;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.163-170
    • /
    • 2021
  • Emergency generators normally use diesel engines. The generators need to conduct weekly no-load operation inspections to ensure stable performance at emergency situations. In particular, the generators with large diesel engines mainly use rectangle type filter substrates. In order to minimize hazardous emissions generated by generators, optimizing the reduction efficiency through CFD analysis of flow characteristics of PM/NOX reduction system is important. In this study, we analyzed internal flow by CFD, which is difficult to confirm by experimental method. The main factors in our numerical study are the changes of flow uniformity and back pressure. Therefore, changes in flow characteristics were studied according to urea injector locations, selective catalyst reduction (SCR) diffuser angle, and filter porosity.