DOI QR코드

DOI QR Code

NOx Reduction Characteristics of Ship Power Generator Engine SCR Catalysts according to Cell Density Difference

선박 발전기관용 SCR 촉매의 셀 밀도차에 따른 NOx 저감 특성

  • Kyung-Sun Lim (Graduate School of Mokpo National Maritime University) ;
  • Myeong-Hwan Im (Division of Onboard Training, Mokpo National Maritime University)
  • 임경선 (목포해양대학교 기관시스템공학과) ;
  • 임명환 (목포해양대학교 승선실습과정부)
  • Received : 2022.09.21
  • Accepted : 2022.12.28
  • Published : 2022.12.31

Abstract

The selective catalytic reduction (SCR) is known as a very efficient method to reduce nitrogen oxides (NOx) and the catalyst performs reduction from nitrogen oxides (NOx) to nitrogen (N2) and water vapor (H2O). The catalyst, which is one of the factors determining the performance of the nitrogen oxide (NOx) ruduction method, is known to increase catalyst efficiency as cell density increases. In this study, the reduction characteristics of nitrogen oxides (NOx) under various engine loads investigated. A 100CPSI(60Cell) catalysts was studied through a laboratory-sized simulating device that can simulate the exhaust gas conditions from the power generation engine installed in the training ship SEGERO. The effect of 100CPSI(60Cell) cell density was compared with that of 25.8CPSI(30Cell) cell density that already had NOx reduction data from the SCR manufacturing. The experimental catalysts were honeycomb type and its compositions and materials of V2O5-WO3-TiO2 were retained, with only change on cell density. As a result, the NOx concentration reduction rate from 100CPSI(60Cell) catalyst was 88.5%, and IMO specific NOx emission was 0.99g/kwh satisfying the IMO Tier III NOx emission requirement. The NOx concentration reduction rate from 25.8CPSI(30Cell) was 78%, and IMO specific NOx emission was 2.00g/kwh. Comparing the NOx concentration reduction rate and emission of 100CPSI(60Cell) and 25.8CPSI(30Cell) catalysts, notably, the NOx concentration reduction rate of 100CPSI(60Cell) catalyst was 10.5% higher and its IMO specific NOx emission was about twice less than that of the 25.8CPSI(30Cell) catalysts. Therefore, an efficient NOx reduction effect can be expected by increasing the cell density of catalysts. In other words, effects to production cost reduction, efficient arrangement of engine room and cargo space can be estimated from the reduced catalyst volume.

선택적 촉매 환원법(SCR)은 질소산화물(NOx)을 저감하는 매우 효율적인 방법으로 알려져 있으며 발생된 질소산화물(NOx)을 질소(N2)와 수증기(H2O)로 환원시키는데 촉매 작용을 한다. 질소산화물(NOx) 저감 성능을 결정하는 요소 중 하나인 촉매는 셀 밀도가 증가하면 촉매효율이 증가하는 것으로 알려져 있다. 본 연구에서는 실습선 세계로호에 설치되어 있는 발전 기관의 배기가스 조건을 모사한 실험장치를 통하여 100CPSI(60Cell)촉매의 부하에 따른 질소산화물(NOx) 저감 성능을 확인하고 세계로호에 설치되어 있는 25.8CPSI(30Cell) 촉매의 기존 연구 자료와의 비교를 통해, 셀 밀도가 질소산화물(NOx)의 저감에 미치는 영향에 대하여 고찰하였다. 실험용 촉매는 셀 밀도만 변화를 주었고 형태는 벌집형(honeycomb), 조성물질은 V2O5-WO3-TiO2를 동일하게 사용하여 제작하였다. 실험결과 100CPSI(60Cell) 촉매의 질소산화물(NOx) 농도 저감율은 평균적으로 88.5%이며 IMO specific NOx 배출량은 0.99g/kwh로 IMO Tier III NOx 배출기준을 만족하였다. 25.8CPSI(30Cell) 촉매의 경우, 질소산화물(NOx) 농도 저감율은 78%, IMO specific NOx 배출량은 2.00g/kwh 이었다 두 촉매의 NOx 농도 저감율과 IMO specific NOx 배출량을 비교하였을 때, 100CPSI(60Cell)촉매가 25.8CPSI(30Cell) 촉매보다, NOx 농도 저감율은 10.5% 높고 IMO specific NOx 배출량은 약 2배 적은 것을 확인하였다. 따라서 촉매의 셀 밀도를 높임으로써 효율적인 탈질효과를 기대할 수 있으며 향후 실선 테스트를 통하여 검증한다면 촉매의 부피 저감을 통한 제작 비용을 줄이고 협소한 선박 기관실을 효율적으로 사용하기 위한 실용적인 자료로서 기대된다.

Keywords

References

  1. Bae, M. W., J. H. Ryu, S. W. Kim, and H. S. Park(2020), A Study on Reduction Characteristics of NOx Emissions by SCR and EGR Systems in a Large Two-stroke Diesel Engine, Transactions of the Korean Society of Mechanical Engieering B, Vol. 44, No. 7, pp. 449-457. https://doi.org/10.3795/KSME-B.2020.44.7.449
  2. CIMAC(The International Council on Combustion Engines) (2008), Emission Calculation Check Guide-IMO NOx Technical Code.
  3. HHI(2017), NOx Technical File for 6h21/32.
  4. Hong, S. H.(2007), Technological Trends of DENITRATION CATALYST (탈질촉매 기술동향), Ceramist Vol. 10, No. 1, pp. 53-64.
  5. IMO(International Maritime Organization) 2017 GUIDELINES ADDRESSING ADDITIONAL ASPECTS OF THE NOX TECHNICAL CODE 2008 WITH REGARD TO PARTICULAR REQUIREMENTS RELATED TO MARINE DIESEL ENGINES FITTED WITH SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM (2017), MEPC 291 (71) : Scale Test Method (Scheme B)
  6. IMO(International Maritime Organization) NOx TECHNICAL CODE(2008), MEPC 57/WP.7/ADD.2.
  7. Jeong, G. Y., B. J. Im, and S. S. Lee(2012), Feature: Current State of Technology Development for Green Ship SCR System - Technology Trend for Catalyst of SCR System (특집:녹색선박 SCR시스템 기술개발 현황 - SCR 시스템 촉매 기술동향), State of the art report (機械와 材料), Vol. 24, No. 2, pp. 38-46.
  8. Joakim, R. T., T. Slabiak, and N. White(2010), Ammonium bisulfate inhibition of SCR catalysts.
  9. KEA(Korea Electric Association)(2010), KEPIC (Korea Electric Power Industry Code), Guideline for the Testing of DENOx Catalysts.
  10. Lee, S. W.(2017), An Experimental Study on NOx Reduction Performance of Low Pressure SCR System, Korea Maritime & Ocean University.
  11. Lim, K. S., M. H. Lim, J. G. Nam, and W. H. Han(2019), A Study on Operating Characteristics of Main Engine LP-SCR System for Ships, Autumn Academic Conference of the Korean Society of Marine Environment & Safety, Vol. 2019, No. 11, p. 221.
  12. Park, J. W.(2016), The experimental study on the NOx removal efficiency according to the cell density of the SCR catalyst, Kyungpook National University.
  13. Park, J. W., S. S. Park, K. W. Ku, and J. G. Hong(2016), Effect of NOx Removal Efficiency according to Space Velocity and Linear Velocity of SCR Catalyst, Journal of the ILASS-KOREA, Vol. 21, No. 2, pp. 71-77.
  14. Won, J. M. and S. C. Hong(2019), Selective Catalytic Reduction (SCR) Technology Trend for the Removal of Nitrogen Oxide from Ship Flue Gas, Korean Industrial Chemistry NEWS, Vol. 22, No. 5, pp. 25-40.