• Title/Summary/Keyword: NO/iNOS activity

Search Result 676, Processing Time 0.033 seconds

Nitric Oxide Generation from Peritoneal Macrophages by Human Chorionic Gonadotropin (사람 융모 성선 자극 호르몬에 의한 복강 대식세로로부터 산화질소의 발생)

  • Lee, Eun-Hee;Shin, Tae-Yong;Kim, Hyung-Min
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.365-369
    • /
    • 1997
  • Human chorionic gonadotropin (hCG) is a placental hormone and is involved in maintenance of the corpus luteum during pregnancy. In the present study, effect of hCG on nitiric ox ide (NO) generation from peritoneal macrophage was examined. hCG ahd no effect on NO generation by itself, whereas recombinant interferon- ${\gamma}$ (rIFN-${\gamma}$) alone had modest activity. When hCG was used in combination with rIFN-${\gamma}$, there was a marked cooperative induction of NO generation in a dose-dependent manner. The optimal effect of hCG on NO generation was shown at 6 hr after treatment with rIFN-${\gamma}$. Furthermore, northern blot analysis of showed that hCG increased the expression of inducible NO synthase(iNOS) gene. These results suggest that hCG induces NO generation from macrophages by increasing the expression of iNOS gene.

  • PDF

NF-kB and AP-1-regulatory Mechanism of Buthus Martensi Karsch Herbal Acupuncture Solution on Inflammatory Cytokine-induced Human Chondrocytes Dysfunction

  • Cho, Jae-Yong;Kim, Kyung-Ho;Cho, Hyun-Seok;Lim, Dae-Jung;Hwang, Ji-Hye;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.61-72
    • /
    • 2006
  • Objectives : Human chondrocytes co-treated with Buthus martensi Karsch herbal acupuncture solution(BMK-HAS) extract produced significantly less NO compared with chondrocytes stimulated with $IL-1{\beta}$ alone Methods : Activation and translocation of and NF-kB DNA binding activity were determined by Western blotting and specific enzyme-linked immunosorbent assay. Results : The inhibition of NO production correlated with the suppression of induction and expression of nuclear factor-kB (NF-kB) and activation protein-1 (AP-1)-dependent gene. BMK-HAS inhibited the activation and translocation of NF-kB to the nucleus, indicating that BMK-HAS inhibits the $IL-1{\beta}-induced$ production of NO in human chondrocytes by interfering with the activation of NF-kB through a novel mechanism. In addition, BMK-HAS reduced prostaglandin E2 (PGE2)production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) or cyclooxygenase-1 (COX-1) was observed. My data, therefore, suggest that BMK-HAS may be a therapeutically effective inhibitor of $IL-1{\beta}-induced$ inflammatory effects that are dependent on NF-kB activation in human OA chondrocytes. Conclusion : The results indicate that BMK-HAS exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and PGE2 production, which could be due to a decreased expression of iNOS and COX-2 through the transcription factors NF-kB and AP-1.

  • PDF

Dihydrobenzofuran Neolignans Isolated from Euonymus alatus Leaves and Twigs Attenuated Inflammatory Responses in the Activated RAW264.7 Macrophage Cells

  • Kim, Na-Hyun;Yang, Min Hye;Heo, Jeong-Doo;Sung, Sang Hyun;Jeong, Eun Ju
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Anti-inflammatory effects of dihydrobenzofuran neolignans isolated from Euonymus alatus leaves and twigs were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Six neolignans, (+)-simulanol (1), (+)-dehydrodiconiferyl alcohol (2), (-)-simulanol (3), (-)-dehydrodiconiferyl alcohol (4), (+)-dihydrodehyrodiconiferyl alcohol (5), threo-buddlenol B (6) effectively inhibited the production of nitric oxide (NO) induced by LPS, and the activity of iNOS. (-)-dehydrodiconiferyl alcohol (4), which showed the most potent inhibitory activity, attenuated the activity of iNOS enzyme and also the expression of iNOS and COX-2 proteins. The subsequent production of pro-inflammatory cytokines, interleukin-$1{\beta}$, interleukin-6, tumor necrosis factor-${\alpha}$ and prostaglandin E2 were also inhibited by the pretreatment of RAW264.7 cells with (-)-dehydrodiconiferyl alcohol (4). These neolignans are thought to contribute to anti-inflammatory effects of E. alatus, and expected to be potential candidates to prevent/treat inflammation-related diseases.

Effects of Butanol extract from Rhois Vernicifluae Cortex (RVC) in lipopolysaccharides-induced macrophage RAW 264.7 cells (칠피(漆皮) 부탄올 분획물이 LPS로 유도된 RAW 264.7 대식세포에 미치는 영향)

  • Song, Saeng-Yeop;Sim, Sung-Yong;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.1 s.32
    • /
    • pp.1-15
    • /
    • 2007
  • Objectives : RVC has long been used for a useful natural agent ameliorating inflammation related symptoms in the folk medicine recipe. This study was performed to investigate effects of RVC on the inflammation and oxidation in RAW 264.7 cells. Methods : The RVC was extracted with 80% ethanol and sequentially partitioned with solvents in order to increase polarity. With the various fractions, we determined the activities on the inflammation and oxidation in RAW 264.7 cells. Results : 1. Among the various solvent extracts of RVC, the butanol fraction showed the most powerful inhibitory ability against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without affecting cell viability. 2. Butanol fraction showed a oxidation inhibition effect by decreasing the DPPH and OH radicals. 3. Butanol fraction exhibited the inhibitory avilities against iNOS and COX-2. 4. Reverse transcriptase polymerase chain reaction (RT-PCR) and Westem blotting analysis revealed that the BuOH fraction provided a primary inhibitor of the iNOS protein and mRNA expression in LPS-induced RAW 264.7 cells. Among the up-regulater molecules of iNOS and COX-2, the BuOh fraction of RVC was shown the inhibitory activity of phoshporylation of c-Jun N-terminal kinase (JNK) 1/2 and threonine protein kinase (AKT), the one of the MAPKs pathway. Conclusion : Thus, the present study suggests that the response of a component of the BuOH fraction to NO generation via iNOS expression provide a important clue to elucidate anti-inflammatory and anti-oxidation mechanism of RVC.

  • PDF

Anti-inflammatory Activity of Extracts from Ultra-Fine Ground Saururus chinensis Leaves in Lipopolysaccharide-Stimulated Raw 264.7 Cells

  • Kim, Dong-Hee;Cho, Jun-Hyo;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • Bioactive components of ultra-fine ground Saururus, the extraction yield increases when the leaves are ultra-fine ground. Comparison of normal-ground and ultra-fine ground Saururus chinensis leaves showed that the solid content and antiinflammatory activity of ultra-fine ground extracts was higher than that of normal-ground extracts. Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were treated with different concentrations of Saururus chinensis extract and the amount of nitric oxide (NO) was determined; LPS-treated cells produced 2 times more NO than cells that were not treated with LPS. Moreover, the NO production in cells treated with Saururus chinensis extract was inhibited in a concentration-dependent manner. Because the stimulant-induced NO production is regulated by the inducible nitric oxide synthase (iNOS), we measured the iNOS protein level to elucidate the mechanism by which the NO production was inhibited. We found that the amount of iNOS decreased dose-dependently. It was reduced by 53% at a Saururus chinensis extract concentration of $100{\mu}g/mL$. The protein expression of cyclooxygenase-2 (COX-2) in LPS-treated Raw 264.7 cells was inhibited by 31% at $100{\mu}g/mL$ of Saururus chinensis extract. Gel shift of the nuclear factor kappa B-DNA complex occurred in LPS-treated cells and the intensity of the band decreased gradually in a concentration-dependent manner. Ultra-fine ground Saururus chinensis extract had a concentration-dependent inhibitory effect on the production of prostaglandin $E_2$, tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$ (IL-$1{\beta}$), IL-6, and IL-8 in LPS-treated Raw 264.7 cells, i.e., at $50{\mu}g/mL$ of Saururus chinensis extract, their levels were decreased by 53, 67, 52, 37, and 21% respectively.

Inhibition of Proinflammatory Cytokine-induced Invasiveness of HT-29 Cells by Chitosan Oligosaccharide

  • Nam, Kyung-Soo;Kim, Mee-Kyung;Shon, Yun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2042-2045
    • /
    • 2007
  • The effect of chitosan oligosaccharide (COS, 1 kDa${\gamma}$, 10 ng/ml IL-$1{\alpha}$, and 25 ng/ml TNF-${\alpha}$) in HT-29 cells. Inducible nitric oxide synthase (iNOS) expression induced by these cytokines was inhibited by COS. COS pretreatment inhibited the invasiveness of cytokines-treated HT-29 cells through Matrigel-coated membrane in a dose-dependent manner. COS also inhibited cytokines-induced matrix metalloproteinase (MMP)-2 activity. This study shows that proinflammatory cytokines induce NO production, iNOS expression, and invasiveness of human colorectal adenocarcinoma HT-29 cells. COS pretreatment inhibited cytokines-mediated NO production, iNOS expression, and invasiveness of HT-29 cells. These results provide sufficient information for the further development of COS as an antitumor metastatic agent for the treatment of colon cancer.

Antioxidant and Suppressive Effects of Ethanolic Extract Fractions from Safflower (Carthamus tinctorius L.) Flower on the Biosynthesis of Inflammatory Mediators from LPS-stimulated RAW 264.7 Cells

  • Lee, Je-Hyuk;Jeon, Choon-Sik;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.143-149
    • /
    • 2009
  • The aim of this study was to elucidate the anti-inflammatory activity of safflower (Carthamus tinctorius L.) ethanolic extract fractions (CFEFs). Butanol fraction had the strongest antioxidant activity, and all CFEFs, except for chloroform fraction, partly inhibited lipopolysaccharide (LPS)-induced nitrite production in RAW 264.7 cells. In the cell-free system, hexane and butanol fractions chemically quenched nitric oxide (NO). In addition, the iNOS mRNA transcription was suppressed by ethanol extract and hexane fraction in LPS-stimulated RAW 264.7 cells. Taken together, the inhibitory effect of CFEFs on NO production from LPS-stimulated RAW 264.7 cells, might be due to both the chemical NO quenching activity and the suppression of iNOS mRNA transcription partially. The synthesis of prostaglandin $E_2$ ($PGE_2$) was potently inhibited by ethanol extract to below basal label, and the transcription of cyclooxygenase-2 (COX-2), an enzyme involving in $PGE_2$ synthesis, was partially suppressed by ethanol extract and hexane fraction. Based on these results, CFEFs may be useful as an alternative medicine for the relief and retardation of immunological inflammatory responses through the reduction of inflammatory mediators, including NO and $PGE_2$ production.

Lonicera Japonioa Inhibits the Production of NO through the Suppression of NF-kB Activity in LPS-stimulated Mouse Peritoneal Macrophages

  • Kim Young-hee;Kim Han-do
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.1
    • /
    • pp.163-171
    • /
    • 2004
  • The flowers of Lonicera japonica Thunb. (Caprifoliaceae) has been used as anti-inflammatory drug in the folk medicine recipe and been proved its anti-inflammatory effect in the oriental medicine. However, the action mechanism of Lonicera japonica that exhibits anti-inflammatory effects has not been determined. Since nitric oxide (NO) is one of the major inflammatory parameter, we studied the effect of aqueous extracts of Lonicera japonica (AELJ) on NO production in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. NO and inducible NO synthase (iNOS) level were significantly reduced in LPS-stimulated macrophages by AELJ compared to those without Electrophoretic mobility shift assay (EMSA) indicated that AELJ blocked the activation of nuclear factor kappa B (NF-kB), which was considered to be a potential transcription factor for the iNOS expression. AELJ also blocked the phosphorylation and degradation of inhibitor of kappa B-alpha (IkB-${\alpha}$). Furthermore, IkB kinase alpha (IKK${\alpha}$), which is known to phosphorylate serine residues of IkB directly, is inhibited by AELJ in vivo and in vitro. These results suggest that AELJ could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of NF-kB activity.

  • PDF

Effects of Dangguijakyak-san Extract on Nitric Oxide Production and Cytokine Gene Expression in RAW 264.7 Macrophages Cell (당귀작약산이 마우스 대식세포주의 NO 생성 및 사이토카인 유전자 발현에 미치는 영향)

  • Shin Sang Woo;Lee Young Sun;Park Jong Hyun;Kwon Taeg Kyu;Suh Seong Il;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1443-1448
    • /
    • 2004
  • The present study was conducted to evaluate the immunomodulatory effects of Dangguijakyak-san(당귀작약산). We investigated the effects of cell proliferation in mouse spleen cell and RAW 264.7 macrophages cells. Dangguijakyak-san enhanced mitogenic activity in the dose-response manner in mouse spleen cells and RAW 264.7 macrophages cells. In nitric oxide (NO) synthesis and iNOS mRNA expression by Dangguijakyak-san, Dangguijakyaksan alone had an effect on NO synthesis and iNOS mRNA expression in RAW 264.7 cells. NO production and iNOS mRNA expression which is excessively induced by LPS decreased after treatment of Dangguijakyak-san. The expressions of cytokine gene by Dangguijakyak-san investigated using reverse transcription polymerase chain reaction (RT-PCR). In RT-PCR, IL-1α, IL-1β and IL-6 mRNA expressions induced in Dangguijakyak-san-treated RAW 264.7 cells. These data indicate that 1) Dangguijakyak-san can modulate various immune response and 2) the immunomodulatory effects of Dangguijakyak-san may be, in part, associated with the regulation of NO synthesis, the expressions of these cytokine as well as the mitogenic effect on spleen cells and macrophages cells.

The Protective Effect of Chlorophyll a Against Oxidative Stress and Inflammatory Processes in LPS-stimulated Macrophages

  • Park, Ji-Young;Park, Chung-Mu;Kim, Jin-Ju;Noh, Kyung-Hee;Cho, Chung-Won;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.205-211
    • /
    • 2007
  • This study was designed to investigate the suppressive effect of chlorophyll a on nitric oxide (NO) production and intracellular oxidative stress. In addition, chlorophyll a regulation of nuclear factor (NF) ${\kappa}B$ activation and inducible NO synthase (iNOS) expression were explored as potential mechanisms of NO suppression in a lipopolysaccharide (LPS)-stimulated macrophage cell line. RAW 264.7 murine macrophages were preincubated with various concentrations ($0-10\;{\mu}g/ mL$) of chlorophyll a and stimulated with LPS to induce oxidative stress and inflammatory response. Treatment with chlorophyll a reduced the accumulation of thiobarbituric acid-reactive substances (TBARS), enhancing glutathione level and the activities of antioxidative enzymes including superoxide dismutase, catalase, glutathione peroxidase (GSH-px), and glutathione reductase in LPS-stimulated macrophages compared to LPS-only treated cells. NO production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $12.8\;{\mu}g/mL$. Treatment with chlorophyll a suppressed the levels of iNOS protein and its mRNA expression. The specific DNA binding activities of NFkB on nuclear extracts from chlorophyll a treated cells were significantly suppressed in a dose-dependent manner with an $IC_{50}$ of $10.7\;{\mu}g/mL$. Chlorophyll a ameliorates NO production and iNOS expression through the down-regulation of NFkB activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.