• Title/Summary/Keyword: NNAL

Search Result 4, Processing Time 0.019 seconds

Levels of Tobacco-specific Metabolites among Non-smoking Lung Cancer Cases at Diagnosis: Case-control Findings

  • Hwang, Sang-Hyun;Ryu, Hye-Jung;Kang, Soo Jin;Yun, E. Hwa;Lim, Min Kyung;Kim, Heung Tae;Lee, Jin Soo;Lee, Do-Hoon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6591-6593
    • /
    • 2013
  • Background: Environmental tobacco smoking (ETS) significantly contributes to morbidity and mortality and is a known risk factor for lung cancer development in lifelong nonsmokers. The metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides (NNAL-Glucs) have now emerged as leading biomarkers for the study of carcinogen exposure in non-smokers exposed to ETS. Materials and Methods: We carried out our study on NNAL in the urine of non-smokers exposed to ETS and the association between ETS and lung cancer. Subjects were enrolled from 2008-2010. NNAL was analyzed for 74 non-smoking lung cancer and 85 healthy controls. The main objective of this study was to provide an estimate of the risk of lung cancer from exposure to ETS in the Korean population. Results: The mean NNAL concentration in urine was significantly lower in non-smoking patient groups (n=74) than in control groups (n=85) ($4.7{\pm}15.0$ pg/mg, $6.5{\pm}17.9$ pg/mg, respectively, Mann-Whitney U test, p<0.001). Conclusions: The urine NNAL of non-smoking patients with lung cancer was not elevated with regard to the non-smoking control group. This may be due to life-style changes after diagnosis. A prospective study will be needed to evaluate the association of NNAL and non-smoking lung cancer.

Binding Pattern Elucidation of NNK and NNAL Cigarette Smoke Carcinogens with NER Pathway Enzymes: an Onco-Informatics Study

  • Jamal, Qazi Mohammad Sajid;Dhasmana, Anupam;Lohani, Mohtashim;Firdaus, Sumbul;Ansari, Md Yousuf;Sahoo, Ganesh Chandra;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5311-5317
    • /
    • 2015
  • Cigarette smoke derivatives like NNK (4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone) and NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butan-1-ol) are well-known carcinogens. We analyzed the interaction of enzymes involved in the NER (nucleotide excision repair) pathway with ligands (NNK and NNAL). Binding was characterized for the enzymes sharing equivalent or better interaction as compared to +Ve control. The highest obtained docking energy between NNK and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.13 kcal/mol, -7.27 kcal/mol, -8.05 kcal/mol and -7.58 kcal/mol respectively. Similarly the highest obtained docking energy between NNAL and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.46 kcal/mol, -7.94 kcal/mol, -7.83 kcal/mol and -7.67 kcal/mol respectively. In order to find out the effect of NNK and NNAL on enzymes involved in the NER pathway applying protein-protein interaction and protein-complex (i.e. enzymes docked with NNK/NNAL) interaction analysis. It was found that carcinogens are well capable to reduce the normal functioning of genes like RAD23A (HR23A), CCNH, CDK7 and CETN2. In silico analysis indicated loss of functions of these genes and their corresponding enzymes, which possibly might be a cause for alteration of DNA repair pathways leading to damage buildup and finally contributing to cancer formation.

Deletion Polymorphism of UGT2B17 and Its Relation to Lung Cancer (UGT2B17 유전자의 deletion polymorphism과 폐암과의 연관성)

  • Lee, Se-Ra;Ahn, Myoung-Hyun;Seol, So-Young;Lee, Ji-Sun;Chung, Chung-Nam;Leem, Sun-Hee
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.703-709
    • /
    • 2010
  • Glucuronidation is a major pathway for NNAL [4-(methylnitrosamno)-1-(3-pyridyl)-1-butanol] and UGT2B17 (UGT, uridine diphospho-glucuronosyltransferase) is from the UGT2B family that glucuronidates carcinogens. UGT2B17 deletion was associated with decreased levels of NNAL and with increased risk of some cancers. The UGT2B17 gene varies in copy number from zero to two per individual in humans. To examine whether UGT2B17 gene deletion is associated with the risk of lung cancer, we investigated copy number variants (CNV) in 271 cancer-free controls and 176 cases of lung cancer in Koreans by a PCR-based method. The frequency of the UGT2B17 deleted alleles was much higher than in other Caucasian and African-American groups which have already been reported. While only up to 10% of Caucasians have zero copies of the gene, up to 74% of Koreans in this study showed that both copies of the gene were deleted. Furthermore, the overall frequency of this dual deletion in female groups was higher than in male groups. However, there was no association between CNV in UGT2B17 and lung cancer. This result suggested that the UGT2B17 deletion allele was not associated with the susceptibility of lung cancers in the Korean group. However, this UGT2B17 CNV polymorphism may be a useful marker for evolutionary analysis among races.

Biomarkers of Exposure for Cigarette Smoke (담배연기 노출량 평가 생체지표)

  • Park, Chul-Hoon;Shin, Han-Jae;Lee, Hyeong-Seok;Yoo, Ji-Hye;Sohn, Hyung-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.58-67
    • /
    • 2009
  • Biomarkers could be critical and useful tools for assessing the biological effects of smoking and detecting differences between potentially reduced exposure product (PREP) and conventional cigarettes. Smoking-related biomarkers can be classified into three categories as biomarkers of exposure, biomarkers of effects, and biomarkers of potential harm. When compared with the biomarkers of effects or harm, the biomarkers of exposure for chemical constituents of cigarette smoke are well established and characterized. In addition, they could offer the important information in understanding how cigarette smoke interacts with biological molecules and causes the disease to human. Therefore, we provide an overview of 6 biomarkers of exposure (Nicotine and nicotine metabolites, Carboxyhaemoglobin, NNAL (4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol) and NNAL - glucuronide, 3-Hydroxypropyl-mercapturic acid, and Monohydroxy-butenyl-mercapturic acids, and Urine mutagenicity) which were validated through extensive research and clinical experience. These reliable biomarkers could help identify the efficacy of PREP by predicting early toxicological effects and lead to improve it.