• Title/Summary/Keyword: NN Model

Search Result 280, Processing Time 0.031 seconds

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.

Building Domain Ontology through Concept and Relation Classification (개념 및 관계 분류를 통한 분야 온톨로지 구축)

  • Huang, Jin-Xia;Shin, Ji-Ae;Choi, Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.562-571
    • /
    • 2008
  • For the purpose of building domain ontology, this paper proposes a methodology for building core ontology first, and then enriching the core ontology with the concepts and relations in the domain thesaurus. First, the top-level concept taxonomy of the core ontology is built using domain dictionary and general domain thesaurus. Then, the concepts of the domain thesaurus are classified into top-level concepts in the core ontology, and relations between broader terms (BT) - narrower terms (NT) and related terms (RT) are classified into semantic relations defined for the core ontology. To classify concepts, a two-step approach is adopted, in which a frequency-based approach is complemented with a similarity-based approach. To classify relations, two techniques are applied: (i) for the case of insufficient training data, a rule-based module is for identifying isa relation out of non-isa ones; a pattern-based approach is for classifying non-taxonomic semantic relations from non-isa. (ii) For the case of sufficient training data, a maximum-entropy model is adopted in the feature-based classification, where k-NN approach is for noisy filtering of training data. A series of experiments show that performances of the proposed systems are quite promising and comparable to judgments by human experts.

Line-Segment Feature Analysis Algorithm for Handwritten-Digits Data Reduction (필기체 숫자 데이터 차원 감소를 위한 선분 특징 분석 알고리즘)

  • Kim, Chang-Min;Lee, Woo-Beom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • As the layers of artificial neural network deepens, and the dimension of data used as an input increases, there is a problem of high arithmetic operation requiring a lot of arithmetic operation at a high speed in the learning and recognition of the neural network (NN). Thus, this study proposes a data dimensionality reduction method to reduce the dimension of the input data in the NN. The proposed Line-segment Feature Analysis (LFA) algorithm applies a gradient-based edge detection algorithm using median filters to analyze the line-segment features of the objects existing in an image. Concerning the extracted edge image, the eigenvalues corresponding to eight kinds of line-segment are calculated, using 3×3 or 5×5-sized detection filters consisting of the coefficient values, including [0, 1, 2, 4, 8, 16, 32, 64, and 128]. Two one-dimensional 256-sized data are produced, accumulating the same response values from the eigenvalue calculated with each detection filter, and the two data elements are added up. Two LFA256 data are merged to produce 512-sized LAF512 data. For the performance evaluation of the proposed LFA algorithm to reduce the data dimension for the recognition of handwritten numbers, as a result of a comparative experiment, using the PCA technique and AlexNet model, LFA256 and LFA512 showed a recognition performance respectively of 98.7% and 99%.

A Development of Defeat Prediction Model Using Machine Learning in Polyurethane Foaming Process for Automotive Seat (머신러닝을 활용한 자동차 시트용 폴리우레탄 발포공정의 불량 예측 모델 개발)

  • Choi, Nak-Hun;Oh, Jong-Seok;Ahn, Jong-Rok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.36-42
    • /
    • 2021
  • With recent developments in the Fourth Industrial Revolution, the manufacturing industry has changed rapidly. Through key aspects of Fourth Industrial Revolution super-connections and super-intelligence, machine learning will be able to make fault predictions during the foam-making process. Polyol and isocyanate are components in polyurethane foam. There has been a lot of research that could affect the characteristics of the products, depending on the specific mixture ratio and temperature. Based on these characteristics, this study collects data from each factor during the foam-making process and applies them to machine learning in order to predict faults. The algorithms used in machine learning are the decision tree, kNN, and an ensemble algorithm, and these algorithms learn from 5,147 cases. Based on 1,000 pieces of data for validation, the learning results show up to 98.5% accuracy using the ensemble algorithm. Therefore, the results confirm the faults of currently produced parts by collecting real-time data from each factor during the foam-making process. Furthermore, control of each of the factors may improve the fault rate.

Kidney Tumor Segmentation through Semi-supervised Learning Based on Mean Teacher Using Kidney Local Guided Map in Abdominal CT Images (복부 CT 영상에서 신장 로컬 가이드 맵을 활용한 평균-교사 모델 기반의 준지도학습을 통한 신장 종양 분할)

  • Heeyoung Jeong;Hyeonjin Kim;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.21-30
    • /
    • 2023
  • Accurate segmentation of the kidney tumor is necessary to identify shape, location and safety margin of tumor in abdominal CT images for surgical planning before renal partial nephrectomy. However, kidney tumor segmentation is challenging task due to the various sizes and locations of the tumor for each patient and signal intensity similarity to surrounding organs such as intestine and spleen. In this paper, we propose a semi-supervised learning-based mean teacher network that utilizes both labeled and unlabeled data using a kidney local guided map including kidney local information to segment small-sized kidney tumors occurring at various locations in the kidney, and analyze the performance according to the kidney tumor size. As a result of the study, the proposed method showed an F1-score of 75.24% by considering local information of the kidney using a kidney local guide map to locate the tumor existing around the kidney. In particular, under-segmentation of small-sized tumors which are difficult to segment was improved, and showed a 13.9%p higher F1-score even though it used a smaller amount of labeled data than nnU-Net.

Condition Assessment for Wind Turbines with Doubly Fed Induction Generators Based on SCADA Data

  • Sun, Peng;Li, Jian;Wang, Caisheng;Yan, Yonglong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.689-700
    • /
    • 2017
  • This paper presents an effective approach for wind turbine (WT) condition assessment based on the data collected from wind farm supervisory control and data acquisition (SCADA) system. Three types of assessment indices are determined based on the monitoring parameters obtained from the SCADA system. Neural Networks (NNs) are used to establish prediction models for the assessment indices that are dependent on environmental conditions such as ambient temperature and wind speed. An abnormal level index (ALI) is defined to quantify the abnormal level of the proposed indices. Prediction errors of the prediction models follow a normal distribution. Thus, the ALIs can be calculated based on the probability density function of normal distribution. For other assessment indices, the ALIs are calculated by the nonparametric estimation based cumulative probability density function. A Back-Propagation NN (BPNN) algorithm is used for the overall WT condition assessment. The inputs to the BPNN are the ALIs of the proposed indices. The network structure and the number of nodes in the hidden layer are carefully chosen when the BPNN model is being trained. The condition assessment method has been used for real 1.5 MW WTs with doubly fed induction generators. Results show that the proposed assessment method could effectively predict the change of operating conditions prior to fault occurrences and provide early alarming of the developing faults of WTs.

Control of RPG Game Characters using Genetic Algorithm and Neural Network (유전 알고리즘과 신경망을 이용한 RPG 게임 캐릭터의 제어)

  • Kwun, O-Kyang;Park, Jong-Koo
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.13-22
    • /
    • 2006
  • As the development of games continues, the intelligence of NPC is becoming more and more important. Nowadays, the NPCs of MMORPGS are not only capable of simple actions like moving and attacking players, but also utilizing variety of skills and tactics as human-players do. This study suggests a method that grants characters used in RPG(Role-Playing Game) an ability of training and adaptation using Neural network and Genetic Algorithm. In this study, a simple game-play model is constructed to test how suggested intellect characters could train and adapt themselves to game rules and tactics. In the game-play model, three types of characters(Tanker, Dealer, Healer) are used. Intellect character group constructed by NN and GA, and trained by combats against enemy character group constructed by FSM. As the result of test, the proposed intellect characters group acquire an appropriate combat tactics by themselves according to their abilities and those of enemies, and adapt change of game rule.

  • PDF

A Study on Hybrid Structure of Semi-Continuous HMM and RBF for Speaker Independent Speech Recognition (화자 독립 음성 인식을 위한 반연속 HMM과 RBF의 혼합 구조에 관한 연구)

  • 문연주;전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.94-99
    • /
    • 1999
  • It is the hybrid structure of HMM and neural network(NN) that shows high recognition rate in speech recognition algorithms. And it is a method which has majorities of statistical model and neural network model respectively. In this study, we propose a new style of the hybrid structure of semi-continuous HMM(SCHMM) and radial basis function(RBF), which re-estimates weighting coefficients probability affecting observation probability after Baum-Welch estimation. The proposed method takes account of the similarity of basis Auction of RBF's hidden layer and SCHMM's probability density functions so as to discriminate speech signals sensibly through the learned and estimated weighting coefficients of RBF. As simulation results show that the recognition rates of the hybrid structure SCHMM/RBF are higher than those of SCHMM in unlearned speakers' recognition experiment, the proposed method has been proved to be one which has more sensible property in recognition than SCHMM.

  • PDF

Artificial Neural Network for Prediction of Distant Metastasis in Colorectal Cancer

  • Biglarian, Akbar;Bakhshi, Enayatollah;Gohari, Mahmood Reza;Khodabakhshi, Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.927-930
    • /
    • 2012
  • Background and Objectives: Artificial neural networks (ANNs) are flexible and nonlinear models which can be used by clinical oncologists in medical research as decision making tools. This study aimed to predict distant metastasis (DM) of colorectal cancer (CRC) patients using an ANN model. Methods: The data of this study were gathered from 1219 registered CRC patients at the Research Center for Gastroenterology and Liver Disease of Shahid Beheshti University of Medical Sciences, Tehran, Iran (January 2002 and October 2007). For prediction of DM in CRC patients, neural network (NN) and logistic regression (LR) models were used. Then, the concordance index (C index) and the area under receiver operating characteristic curve (AUROC) were used for comparison of neural network and logistic regression models. Data analysis was performed with R 2.14.1 software. Results: The C indices of ANN and LR models for colon cancer data were calculated to be 0.812 and 0.779, respectively. Based on testing dataset, the AUROC for ANN and LR models were 0.82 and 0.77, respectively. This means that the accuracy of ANN prediction was better than for LR prediction. Conclusion: The ANN model is a suitable method for predicting DM and in that case is suggested as a good classifier that usefulness to treatment goals.