• Title/Summary/Keyword: NN Model

Search Result 280, Processing Time 0.026 seconds

Morphological Variation Classification of Red Blood Cells using Neural Network Model in the Peripheral Blood Images (말초혈액영상에서 신경망 모델을 이용한 적혈구의 형태학적 변이 분류)

  • Kim, Gyeong-Su;Kim, Pan-Gu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2707-2715
    • /
    • 1999
  • Recently, there have been researches to automate processing and analysing images in the medical field using image processing technique, a fast communication network, and high performance hardware. In this paper, we propose a system to be able to analyze morphological abnormality of red-blood cells for peripheral blood image using image processing techniques. To do this, we segment red-blood cells in the blood image acquired from microscope with CCD camera and then extract UNL fourier features to classify them into 15 classes. We reduce the number of multi-variate features using PCA to construct a more efficient classifier. Our system has the best performance in recognition rate, compared with two other algorithms, LVQ3 and k-NN. So, we show that it can be applied to a pathological guided system.

  • PDF

An Improved Deep Learning Method for Animal Images (동물 이미지를 위한 향상된 딥러닝 학습)

  • Wang, Guangxing;Shin, Seong-Yoon;Shin, Kwang-Weong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.123-124
    • /
    • 2019
  • This paper proposes an improved deep learning method based on small data sets for animal image classification. Firstly, we use a CNN to build a training model for small data sets, and use data augmentation to expand the data samples of the training set. Secondly, using the pre-trained network on large-scale datasets, such as VGG16, the bottleneck features in the small dataset are extracted and to be stored in two NumPy files as new training datasets and test datasets. Finally, training a fully connected network with the new datasets. In this paper, we use Kaggle famous Dogs vs Cats dataset as the experimental dataset, which is a two-category classification dataset.

  • PDF

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.

Development of a Resignation Prediction Model using HR Data (HR 데이터 기반의 퇴사 예측 모델 개발)

  • PARK, YUNJUNG;Lee, Do-Gil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.297-300
    • /
    • 2021
  • 대부분의 기업에서는 우수한 인적 자원의 유출을 방지하기 위해 직원들이 이직 및 퇴사하는 이유를 연구한다. 이에 기업은 직원이 퇴사하기 전에 면담을 하거나 설문조사를 통해서 연구에 필요한 데이터를 얻는다. 하지만 설문조사에서는 직원들이 직장 생활을 하는 데에 불리할 수도 있는 의견을 드러내려고 하지 않아 정확한 결과를 얻기 힘든 것이 현실이다. 한편, 한국노동연구원에서 발표한 자료에 따르면 기업이 요구하는 최소 학력 수준과 직원의 학력 수준 간의 차이가 클수록 이직 경향이 커진다. 따라서 본 연구에서는 한국노동연구원의 자료에 착안하여, 직원이 가지고 있는 객관적 데이터인 전공, 교육수준, 재직 중인 회사 유형 등의 데이터를 기반으로 직원의 퇴사 여부를 예측하고자 한다. 퇴사 예측 모델을 생성하기 위해 Decision Tree, XGBoost, kNN, SVM을 활용하였으며 각각의 성능을 비교했다. 이 결과, 지금까지 설문조사로 진행되었던 연구에서 파악하지 못한 다양한 요인을 알아낼 수 있었다. 이를 통해 기업이 퇴사 예측 모델을 이용하여 직원이 퇴사하기 전에 미리 이를 인지하고 방지하는 데에 도움을 줄 수 있을 것으로 예상된다.

Wind Power Pattern Forecasting Based on Projected Clustering and Classification Methods

  • Lee, Heon Gyu;Piao, Minghao;Shin, Yong Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • A model that precisely forecasts how much wind power is generated is critical for making decisions on power generation and infrastructure updates. Existing studies have estimated wind power from wind speed using forecasting models such as ANFIS, SMO, k-NN, and ANN. This study applies a projected clustering technique to identify wind power patterns of wind turbines; profiles the resulting characteristics; and defines hourly and daily power patterns using wind power data collected over a year-long period. A wind power pattern prediction stage uses a time interval feature that is essential for producing representative patterns through a projected clustering technique along with the existing temperature and wind direction from the classifier input. During this stage, this feature is applied to the wind speed, which is the most significant input of a forecasting model. As the test results show, nine hourly power patterns and seven daily power patterns are produced with respect to the Korean wind turbines used in this study. As a result of forecasting the hourly and daily power patterns using the temperature, wind direction, and time interval features for the wind speed, the ANFIS and SMO models show an excellent performance.

Estimation of Creep Cavities Using Neural Network and Progressive Damage Modeling (신경회로망과 점진적 손상 모델링을 이용한 크리프 기공의 평가)

  • Jo, Seok-Je;Jeong, Hyeon-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.455-463
    • /
    • 2000
  • In order to develop nondestructive techniques for the quantitative estimation of creep damage a series of crept copper samples were prepared and their ultrasonic velocities were measured. Velocities measured in three directions with respect to the loading axis decreased nonlinearly and their anisotropy increased as a function of creep-induced porosity. A progressive damage model was described to explain the void-velocity relationship, including the anisotropy. The comparison of modeling study showed that the creep voids evolved from sphere toward flat oblate spheroid with its minor axis aligned along the stress direction. This model allowed us to determine the average aspect ratio of voids for a given porosity content. A novel technique, the back propagation neural network (BPNN), was applied for estimating the porosity content due to the creep damage. The measured velocities were used to train the BP classifier, and its accuracy was tested on another set of creep samples containing 0 to 0.7 % void content. When the void aspect ratio was used as input parameter together with the velocity data, the NN algorithm provided much better estimation of void content.

Robust Real-time Tracking of Facial Features with Application to Emotion Recognition (안정적인 실시간 얼굴 특징점 추적과 감정인식 응용)

  • Ahn, Byungtae;Kim, Eung-Hee;Sohn, Jin-Hun;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

TEST ON REAL-TIME CLOUD DETECTION ALGORITHM USING A NEURAL NETWORK MODEL FOR COMS

  • Ahn, Hyun-Jeong;Chung, Chu-Yong;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.286-289
    • /
    • 2007
  • This study is to develop a cloud detection algorit1un for COMS and it is currently tested by using MODIS level 2B and MTSAT-1R satellite radiance data. Unlike many existing cloud detection schemes which use a threshold method and traditional statistical methods, in this study a feed-forward neural network method with back-propagation algorit1un is used. MODIS level 2B products are matched with feature information of five-band MTSAT 1R image data to form the training dataset. The neural network is trained over the global region for the period of January to December in 2006 with 5 km spatial resolution. The main results show that this model is capable to detect complex cloud phenomena. And when it is applied to seasonal images, it shows reliable results to reflect seasonal characteristics except for snow cover of winter. The cloud detection by the neural network method shows 90% accuracy compared to the MODIS products.

  • PDF

Predictive Models for Sasang Constitution Types Using Genetic Factors (유전지표를 활용한 사상체질 분류모델)

  • Ban, Hyo-Jeong;Lee, Siwoo;Jin, Hee-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.32 no.2
    • /
    • pp.10-21
    • /
    • 2020
  • Objectives Genome-wide association studies(GWAS) is a useful method to identify genetic associations for various phenotypes. The purpose of this study was to develop predictive models for Sasang constitution types using genetic factors. Methods The genotypes of the 1,999 subjects was performed using Axiom Precision Medicine Research Array (PMRA) by Life Technologies. All participants were prescribed Sasang Constitution-specific herbal remedies for the treatment, and showed improvement of original symptoms as confirmed by Korean medicine doctor. The genotypes were imputed by using the IMPUTE program. Association analysis was conducted using a logistic regression model to discover Single Nucleotide Polymorphism (SNP), adjusting for age, sex, and BMI. Results & Conclusions We developed models to predict Korean medicine constitution types using identified genectic factors and sex, age, BMI using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN). Each maximum Area Under the Curve (AUC) of Teaeum, Soeum, Soyang is 0.894, 0.868, 0.767, respectively. Each AUC of the models increased by 6~17% more than that of models except for genetic factors. By developing the predictive models, we confirmed usefulness of genetic factors related with types. It demonstrates a mechanism for more accurate prediction through genetic factors related with type.

Using Light Travel Time Effect to Detect Circumbinary Planets with Ground-Based Telescopes

  • Hinse, Tobias Cornelius
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.109.1-109.1
    • /
    • 2012
  • In the past few years, two-planet circumbinary systems (e.g., HW Vir, NN Ser, DP Leo and HU Aqr) have been detected around short-period eclipsing binaries using ground-based telescopes. The existence of these planets has been inferred by interpreting the O-C variations of the mid-eclipse times. We have tested the orbital stability of these systems and propose to use Light Travel Time Effect (LITE) to detect such circumbinary planets from the ground. We generated synthetically the LITE signal of a two-planet circumbinary system with the aim to apply an analytic LITE model to recover the underlying synthetic system. To mimic a degree of realism inherent to ground-based observations, we added to the synthetic LITE data white noise with a Gaussian distribution and sampled the synthetic LITE signal randomly. We successfully recovered the original system demonstrating that two-planet circumbinary systems can be detected using ground-based telescopes, provided the timing measurements of the mid-eclipses are sufficiently accurate and the observing baseline is long enough to ensure a sufficient coverage of all involved periods. We used HU Aqr as a test system and applied our model to its proposed planetary bodies considering near-circular orbits. We present the results of our calculations and discuss the LITE-detectability of a HU Aqr-like system.

  • PDF