The Faster RCNN-based shellfish recognition algorithm is introduced for shellfish recognition studies that currently do not have any deep learning-based algorithms in a practical setting. The original feature extraction module is replaced by DenseNet, which fuses multi-level feature data and optimises the NMS algorithm, network depth and merging method; overcoming the omission of shellfish overlap, multiple shellfish and insufficient light, effectively solving the problem of low shellfish classification accuracy. In the complexifier test environment, the test accuracy was improved by nearly 4%. Higher testing accuracy was achieved compared to the original testing algorithm. This provides favourable technical support for future applications of the improved Faster RCNN approach to seafood quality classification.
The Journal of Korean Institute of Information Technology
/
v.17
no.5
/
pp.13-20
/
2019
Recently, object detection technology based on CNN has been actively studied. Object detection technology is used as an important technology in autonomous vehicles, intelligent image analysis, and so on. In this paper, we propose a rotation change robust object detection system by applying MI-FL (Moment Invariant-Feature Layer) to SSD (Single Shot Multibox Detector) which is one of CNN-based object detectors. First, the features of the input image are extracted based on the VGG network. Then, a total of six feature layers are applied to generate bounding boxes by predicting the location and type of object. We then use the NMS algorithm to get the bounding box that is the most likely object. Once an object bounding box has been determined, the invariant moment feature of the corresponding region is extracted using MI-FL, and stored and learned in advance. In the detection process, it is possible to detect the rotated image more robust than the conventional method by using the previously stored moment invariant feature information. The performance improvement of about 4 ~ 5% was confirmed by comparing SSD with existing SSD and MI-FL.
Journal of the Korea Institute of Military Science and Technology
/
v.22
no.1
/
pp.1-10
/
2019
In this paper, we propose the track initiation algorithm based on the weighted score for TWS radar tracking. This algorithm utilizes radar velocity information to calculate the probabilistic track score and applies the Non-Maximum-Suppression(NMS) to confirm the targets to track. This approach is understood as a modification of a conventional track initiation algorithm in a probabilistic manner. Also, we additionally apply the weighted Hough transform to compensate a measurement error, and it helps to improve the track detection probability. We designed the simulator in order to demonstrate the performance of the proposed track initiation algorithm. The simulation result show that the proposed algorithm, which reduces about 40 % of a false track probability, is better than the conventional algorithm.
Recently CCTV system is installed widely purpose to enhanced physical security, gathering criminal evidence and management of facilities. In spite of supporting strong management function, CCTV system has weak security function. Therefore high security management function is required. Generally it's not easy to control the devices under NAT using a NMS(Network Management System). So we design and implement alive check algorithm of CCTV devices under NAT using DVRNS address resolution and TCP session check. We evaluated and analyzed of developed system on real environment which includes about 100 DVRs under NAT. As a result of test, it showed that device alive check and DVRNS address resolution were well performed without any error.
A low-energy dielectric loaded accelerator with a non-uniform, multi-segment structure is studied and optimized. So far, no analytical solution is provided for such structures. Also, due to the existing nonlinear behavior and a large number of geometric parameters, the problem of numerical optimizations is complex. For this reason, a method is presented to design and optimize such structures using the Genetic Algorithm (GA). Moreover, the GA output results are compared with Trust Region (TR) and Nelder-Mead Simplex (NMS) methods. Comparative results show that the GA is more efficient in achieving optimization goals and also has a higher speed than the two other methods. Finally, an optimized accelerating tube is integrated into a proper coupler. Then, the accelerator is simulated for full electromagnetic investigations using the CST suite of codes. This design leads to a structure with a power of about 80 kW in the X-band, which delivers electrons to the output energy in the range of 300-459 kV. The length and outer diameter of the accelerating tube obtained are 10 cm and 1 cm, respectively.
Proceedings of the Korean Information Science Society Conference
/
2001.10c
/
pp.781-783
/
2001
동영상을 효율적으로 압축하기 위한 움직임벡터 예측에 관한 많은 연구가 진행되어 왔다. 가장 일반적인 FBMA(Full search-based Block Matching Algorithm)는 화질은 좋지만 계산량이 많기 때문에 실시간 인코딩을 요구하는 시스템에서 사용하는데 문제가 있다. 좋은 화질을 유지하면서 인코딩 속도를 해결하기 위한 많은 알고리즘들이 제안되어 왔지만 ASIC이나 소형 시스템에서 사용할 수 있는 방법이 계속 요구되고 있다. 본 논문에서는 계산량을 더욱 줄여 속도향상을 가져오면서 FBMA와 비숫한 SNR을 유지하는 방법인 NMS(New Fast Motion Estimation Search With Subsmapling Method)를 제안하였다. NMS는 서브샘플림한 값을 이용하여 SAD값을 구하고 또한 새로운 Search를 제안하여 기존 방법들이 제공하는 주관적 화질이나 PSNR을 높게 유지하면서도 속도를 10~15% 정도 개선시킬 수 있다.
네트워크 망 관리를 위해 사용되는 SNMP(Simple Network Management Protocol)는 다양한 네트워크장비에 대해 표준화된 정보를 제공한다. 네트워크의 고속화, 대형화로 인해 관리를 위한 정보 수집 트래픽이 증가하고 정보 수집 시간 지연 문제가 발생한다. 본 논문에서는 기존의 SNMP를 이용한 정보수집 방법의 문제점을 파악하여 네트워크 관리를 위한 트래픽량을 줄이고, Polling 소비 시간을 최소화하는 알고리즘을 제안한다. 제안한 알고리즘은 관리 대상 시스템의 각 링크의 트래픽 변화 유무를 예측하여 불필요한 수집을 줄이는 방법이다. 관리 대상 시스템이 많고, 주기적으로 관리 정보를 수집하는 경우 제안한 알고리즘이 효율적으로 사용될 것으로 기대된다. Enterprise 네트워크 형태의 학교 Campus NMS에 적용하여 알고리즘의 타당성을 증명하였다.
Journal of the Earthquake Engineering Society of Korea
/
v.12
no.6
/
pp.13-23
/
2008
In this study, a finite element (FE) model updating method based on the hybrid genetic algorithm (HGA) is proposed to improve the grillage FE model for plate girder bridges. HGA consists of a genetic algorithm (GA) and direct search method (DS) based on a modification of Nelder & Mead's simplex optimization method (NMS). Fitness functions based on natural frequencies, mode shapes, and static deflections making use of the measurements and analytical results are also presented to apply in the proposed method. In addition, a multi-objective function has been formulated as a linear combination of fitness functions in order to simultaneously improve both stiffness and mass. The applicability of the proposed method to girder bridge structures has been verified through a numerical example on a two-span continuous grillage FE model, as well as through an experimental test on a simply supported plate girder skew bridge. In addition, the effect of measuring error is considered as random noise, and its effect is investigated by numerical simulation. Through numerical and experimental verification, it has been proven that the proposed method is feasible and effective for FE model updating on plate girder bridges.
For the purpose of compromising hosts, attackers including infected hosts initially perform a portscan using IP addresses in order to find vulnerable hosts. Considerable research related to portscan detection has been done and many algorithms have been proposed and implemented in the network intrusion detection system (NIDS). In order to distinguish portscanners from remote hosts, most portscan detection algorithms use a fixed threshold that is manually managed by the network manager. Because the threshold is a constant, even though the network environment or the characteristics of traffic can change, many false positives and false negatives are generated by NIDS. This reduces the efficiency of NIDS and imposes a high processing burden on a network management system (NMS). In this paper, in order to address this problem, we propose an automatic portscan detection system using an fast increase slow decrease (FISD) scheme, that will automatically and adaptively set the threshold based on statistical data for traffic during prior time periods. In particular, we focus on reducing false positives rather than false negatives, while the threshold is adaptively set within a range between minimum and maximum values. We also propose a new portscan detection algorithm, rate of increase in the number of failed connection request (RINF), which is much more suitable for our system and shows better performance than other existing algorithms. In terms of the implementation, we compare our scheme with other two simple threshold estimation methods for an adaptive threshold setting scheme. Also, we compare our detection algorithm with other three existing approaches for portscan detection using a real traffic trace. In summary, we show that FISD results in less false positives than other schemes and RINF can fast and accurately detect portscanners. We also show that the proposed system, including our scheme and algorithm, provides good performance in terms of the rate of false positives.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.1795-1811
/
2019
In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.