• Title/Summary/Keyword: NMR structure refinement

Search Result 12, Processing Time 0.036 seconds

Refinement of Protein NMR Structure under Membrane-like Environments with an Implicit Solvent Model

  • Jee, Jun-Goo;Ahn, Hee-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1139-1142
    • /
    • 2009
  • Refinement of NMR structures by molecular dynamics (MD) simulations with a solvent model has improved the structural quality. In this study, we applied MD refinement with the generalized Born (GB) implicit solvent model to protein structure determined under membrane-like environments. Despite popularity of the GB model, its applications to the refinement of NMR structures of hydrophobic proteins, in which detergents or organic solvents enclose proteins, are limited, and there is little information on the use of another GB parameter for these cases. We carried out MD refinement of crambin NMR structure in dodecylphosphocholine (DPC) micelles (Ahn et al., J. Am. Chem. Soc. 2006, 128, 4398-4404) with GB/Surface area model and two different surface tension coefficients, one for aquatic and the other for hydrophobic conditions. Our data show that, of two structures by MD refinement with GB model, the one refined with the parameter to consider hydrophobic condition had the better qualities in terms of precision and solvent accessibility.

Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.

Systematic Assessment of the Effects of an All-Atom Force Field and the Implicit Solvent Model on the Refinement of NMR Structures with Subsets of Distance Restraints

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1944-1950
    • /
    • 2014
  • Employment of a time consuming, sophisticated calculation using the all-atom force field and generalized-Born implicit solvent model (GBIS) for refinement of NMR structures has become practical through advances in computational methods and capacities. GBIS refinement improves the qualities of the resulting NMR structures with reduced computational times. However, the contribution of GBIS to NMR structures has not been sufficiently studied in a quantitative way. In this paper, we report the effects of GBIS on the refined NMR structures of ubiquitin (UBQ) and GB1 with subsets of distance restraints derived from experimental data. Random omission prepared a series of distance restraints 0.05, 0.1, 0.3, 0.5, and 0.7 times smaller. For each number, we produced five different restraints for statistical analysis. We then recalculated the NMR structures using CYANA software, followed by GBIS refinements using the AMBER package. GBIS improved both the precision and accuracy of all the structures, but to varied levels. The degrees of improvement were significant when the input restraints were insufficient. In particular, GBIS enabled GB1 to form an accurate structure even with distance restraints of 5%, revealing that the root-mean-square deviation was less than 1 ${\AA}$ from the X-ray backbone structure. We also showed that the efficiency of searching the conformational space was more important for finding accurate structures with the calculation of UBQ with 5% distance restraints than the number of conformations generated. Our data will provide a meaningful guideline to judge and compare the structural improvements by GBIS.

Effects of force fields for refining protein NMR structures with atomistic force fields and generalized-Born implicit solvent model

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • Atomistic molecular dynamics (MD) simulation has become mature enabling close approximation of the real behaviors of biomolecules. In biomolecular NMR field, atomistic MD simulation coupled with generalized implicit solvent model (GBIS) has contributed to improving the qualities of NMR structures in the refinement stage with experimental restraints. Here all-atom force fields play important roles in defining the optimal positions between atoms and angles, resulting in more precise and accurate structures. Despite successful applications in refining NMR structure, however, the research that has studied the influence of force fields in GBIS is limited. In this study, we compared the qualities of NMR structures of two model proteins, ubiquitin and GB1, under a series of AMBER force fields-ff99SB, ff99SB-ILDN, ff99SB-NMR, ff12SB, and ff13-with experimental restraints. The root mean square deviations of backbone atoms and packing scores that reflect the apparent structural qualities were almost indistinguishable except ff13. Qualitative comparison of parameters, however, indicates that ff99SB-ILDN is more recommendable, at least in the cases of ubiquitin and GB1.

Effects of generalized-Born implicit solvent models in NMR structure refinement

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Rapid advances of computational power and method have made it practical to apply the time-consuming calculations with all-atom force fields and sophisticated potential energies into refining NMR structure. Added to the all-atom force field, generalized-Born implicit solvent model (GBIS) contributes substantially to improving the qualities of the resulting NMR structures. GBIS approximates the effects that explicit solvents bring about even with fairly reduced computational times. Although GBIS is employed in the final stage of NMR structure calculation with experimental restraints, the effects by GBIS on structures have been reported notable. However, the detailed effect is little studied in a quantitative way. In this study, we report GBIS refinements of ubiquitin and GB1 structures by six GBIS models of AMBER package with experimental distance and backbone torsion angle restraints. Of GBIS models tested, the calculations with igb=7 option generated the closest structures to those determined by X-ray both in ubiquitin and GB1 from the viewpoints of root-mean-square deviations. Those with igb=5 yielded the second best results. Our data suggest that the degrees of improvements vary under different GBIS models and the proper selection of GBIS model can lead to better results.

Structural Elucidation and Magnetical Properties of La0.5Ca0.5MnO3 Powders and Pellets (La0.5Ca0.5MnO3 분말과 Pellet의 구조분석 및 자기적 성질)

  • Jung, Miewon;Lee, Jiyun;Kim, Hyunjung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-75
    • /
    • 2005
  • $La_{0.5}Ca_{0.5}MnO_3$ colossal magnetoresistance (CMR) powders and pellets were synthesized by sol-gel process. The structural changes were investigated by FT-IR, CP/MAS $^{13}C$ solid state NMR spectroscopy and XRD. The particle characterization, microstructure of sintered samples, and cation composition of gel powders were studied by FE-SEM/EDS, TEM and ICP-AES. The structure refinement reveals that $La_{0.5}Ca_{0.5}MnO_3$ has orthorhombic, perovskite type unit cell. The magnetic characterizations were identified through measurement of magnetic moment by VSM.

Preparation and Structure of $Re(≡NC_6H_5)(DPPE)CI_3$, $[DPPE=Ph_2PCH_2CH_2PPh_2]$ ($Re(≡NC_6H_5)(DPPE)CI_3$화합물의 합성 및 구조)

  • 박병규;정건수
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.93-97
    • /
    • 1995
  • Re(≡NC6H5)(PPh3)2CI3, I, reacted with, 1,2-bis(diphenylphosphino)ethane (DPPE) to give fac-Re(≡NC6H5)(DPPE)CI3, II. The product has been characterized by 1H-NMR, elemental analysis, and X-ray crystallography. II Crystalizes in the monoclinic space group Pc, with cell parameters a=11.083(3)Å, b=10.930(1)Å, c=14.081(2)Å, β=108.37(2)°, Z=2. Least-squares refinement of the structure led to a R(wR2)factor of 0.0254(0.0607) for 2888 unique reflections of I>2σ(I) and for 352 variables.

  • PDF

Preparation and Structure of $Re(NC_6F_5)(PPh_3)_2Cl_3 $ ($Re(NC_6F_5)(PPh_3)_2Cl_3 $화합물의 합성 및 구조)

  • 박병규;김영웅
    • Korean Journal of Crystallography
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 1996
  • Reaction of Re(O)(PPh3)2Cl3,I, with 2,3,4,5,6-pentafluoroaniline (C6F5NH2), produced Re(NC6F5)(PPh3)2Cl3, II. The product has been characterized by 1H-NMR, elemental analysis, and X-ray diffraction. II crystallizes in the orthorhombic system, space group Pna21 with cell parameters a=18.763Å, b=14.737(2)Å, c=16.707(3)Å, Z=4. Least-square refinement of the structure led to an R(wR2)factor of 0.0455(0.1148) for 3319 unique reflections of I > 2σ(I) and for 174 variables.

  • PDF

Solution Structure of a Prion Protein: Implications for Infectivity

  • He Liu;Jones, Shauna-Farr;Nikolai Ulyanov;Manuel Llinas;Susan Marqusee;Fred E. Cohen;Stanley B. Prusiner;Thomas L. James
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.2
    • /
    • pp.85-105
    • /
    • 1998
  • Prions cause neurodegenerative diseases in animals and humans. The scrapie prion protein (PrPSc) is the major-possibly only-component of the infectious prion and is generated from the cellular isoform (PrPC) by a conformational change. Limited proteolysis of PrPSc produces an polypeptide comprised primarily of residues 90 to 231, which retains infectivity. The three-dimensional structure of rPrP(90-231), a recombinant protein resembling PrPC with the Syrian hamster (SHa) sequence, was solved using multidimensional NMR. Low-resolution structures of rPrP(90-231), synthetic peptides up to 56 residues, a longer (29-231, full-length) protein with SHa sequence, and a short here further structure refinement of rPrP(90-231) and dynamic features of the protein. Consideration of these features in the context of published data suggests regions of conformational heterogeneity, structural elements involved in the PrPC\longrightarrowPrPSc transformation, and possible structural features related to a species barrier to transmission of prion diseases.

  • PDF