• Title/Summary/Keyword: NMR data

Search Result 925, Processing Time 0.025 seconds

Practical Guide to NMR-based Metabolomics - III : NMR Spectrum Processing and Multivariate Analysis

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.46-53
    • /
    • 2018
  • NMR-based metabolomics needs various knowledge to elucidate metabolic perturbation such as NMR experiments, NMR spectrum processing, raw data processing, metabolite identification, statistical analysis, and metabolic pathway analysis regarding technical aspects. Among them, some concepts of raw data processing and multivariate analysis are not easy to understand but are important to correctly interpret metabolic profile. This article introduces NMR spectrum processing, raw data processing, and multivariate analysis.

Complete Assignments of the 1H and 13C NMR Data of Flavone Derivatives

  • Moon, Byoung-Ho;Lee, Young-Shim;Shin, Choon-Shik;Lim, Yoong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.603-608
    • /
    • 2005
  • The $^1H\;and\;^{13}C$ chemical shifts of flavone and its five derivatives were determined completely using the basic 1D and 2D NMR experiments and molecular modeling. Of the six compounds used for our experiments, the NMR data of three compounds were published previously, but we found that the data of two compounds included wrong assignments. Therefore, we report the corrected data and the complete assignments of NMR data of the other three compounds.

Real-time Acquisition of Three Dimensional NMR Spectra by Non-uniform Sampling and Maximum Entropy Processing

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2017-2022
    • /
    • 2008
  • Of the experiments to shorten NMR measuring time by sparse sampling, non-uniform sampling (NUS) is advantageous. NUS miminizes systematic errors which arise due to the lack of samplings by randomization. In this study, I report the real-time acquisition of 3D NMR data using NUS and maximum-entropy (MaxEnt) data processing. The real-time acquisition combined with NUS can reduce NMR measuring time much more. Compared with multidimensional decomposition (MDD) method, which was originally suggested by Jaravine and Orekhov (JACS 2006, 13421-13426), MaxEnt is faster at least several times and more suitable for the realtime acquisition. The designed sampling schedule of current study makes all the spectra during acquisition have the comparable resulting resolutions by MaxEnt. Therefore, one can judge the quality of spectra easily by examining the intensities of peaks. I report two cases of 3D experiments as examples with the simulated subdataset from experimental data. In both cases, the spectra having good qualitie for data analysis could be obtained only with 3% of original data. Its corresponding NMR measuring time was 8 minutes for 3D HNCO of ubiquitin.

NMR Assignments of Rotameric Aporphine Alkaloids from Liriodendron tulipifera

  • Park, InWha;Na, MinKyun
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.171-175
    • /
    • 2020
  • Liriodendron tulipifera, belonging to the family Magnoliaceae, is commonly called tulip tree. Four N-acetylated aporphine alkaloids, N-acetylnornuciferine (1), N-acetylanonaine (2), N-acetyl-3-methoxynornuciferine (3), and N-acetyl-3-methoxynornantenine (4) were isolated from the roots of L. tulipifera. Although the purity of each compound (1 - 4) was determined to be 97, 96, 99, and 98%, respectively, the 1H and 13C NMR spectroscopic data of the aporphine alkaloids 1 - 4 displayed all signals in duplicate, indicating the presence of two rotamers due to restricted rotation of N-COCH3 functionality in solution status. The absolute configurations of 1 - 4 w ere established by measuring specific rotation and comparison with the reported data. This is the first report on the 1H and 13C NMR assignments of N-acetyl-3-methoxynornuciferine (3) and N-acetyl-3-methoxynornantenine (4). This study provides advanced NMR spectroscopic data for the structure determination of rotameric aporphine alkaloids.

Large Solvent and Noise Peak Suppression by Combined SVD-Harr Wavelet Transform

  • Kim, Dae-Sung;Kim, Dai-Gyoung;Lee, Yong-Woo;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.971-974
    • /
    • 2003
  • By utilizing singular value decomposition (SVD) and shift averaged Harr wavelet transform (WT) with a set of Daubechies wavelet coefficients (1/2, -1/2), a method that can simultaneously eliminate an unwanted large solvent peak and noise peaks from NMR data has been developed. Noise elimination was accomplished by shift-averaging the time domain NMR data after a large solvent peak was suppressed by SVD. The algorithms took advantage of the WT, giving excellent results for the noise elimination in the Gaussian type NMR spectral lines of NMR data pretreated with SVD, providing superb results in the adjustment of phase and magnitude of the spectrum. SVD and shift averaged Haar wavelet methods were quantitatively evaluated in terms of threshold values and signal to noise (S/N) ratio values.

Identification of NMR Data for ginsenoside Rg1 (Ginsenoside Rg1의 NMR 데이터 동정)

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Park, Hee-Jeong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.291-299
    • /
    • 2008
  • The fresh ginseng roots were extracted in aqueous methanol (MeOH), and the obtained extracts were partitioned using ethyl acetate (EtOA), n-butanol (n-BuOH), and water, successively. The repeated silica gel column chromatography for n-BuOH fraction afforded a purified ginsenoside $Rg_1$. The physico-chemical, spectroscopic and chromatographic data of ginsenoside $Rg_1$, such as crystallization characteristics, melting point, specific rotation, infrared spectrometry (IR) data, fast atom bombardment/mass spectrometry (FAB/MS) data, nuclear magnetic resonance (NMR) data, retention factor (Rf) in thin layer chromatography (TLC) experiment, and retention time (r.t.) in HPLC analysis, were measured and compared with those reported in literatures. Especially, the previous literatures reported different data for ginsenoside $Rg_1$ in the $^{1}H-$ and $^{13}C$-NMR experiments. This paper gives the exactly assigned NMR data through 2D-NMR experiments, such as $^{1}H-^{1}H$ correlation spectroscopy (COSY), hetero nuclear single quantum correlation (HSQC), and hetero nuclear multiple bond connectivity (HMBC).

Application of metabolic profiling for biomarker discovery

  • Hwang, Geum-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.19-27
    • /
    • 2007
  • An important potential of metabolomics-based approach is the possibility to develop fingerprints of diseases or cellular responses to classes of compounds with known common biological effect. Such fingerprints have the potential to allow classification of disease states or compounds, to provide mechanistic information on cellular perturbations and pathways and to identify biomarkers specific for disease severity and drug efficacy. Metabolic profiles of biological fluids contain a vast array of endogenous metabolites. Changes in those profiles resulting from perturbations of the system can be observed using analytical techniques, such as NMR and MS. $^1H$ NMR was used to generate a molecular fingerprint of serum or urinary sample, and then pattern recognition technique was applied to identity molecular signatures associated with the specific diseases or drug efficiency. Several metabolites that differentiate disease samples from the control were thoroughly characterized by NMR spectroscopy. We investigated the metabolic changes in human normal and clinical samples using $^1H$ NMR. Spectral data were applied to targeted profiling and spectral binning method, and then multivariate statistical data analysis (MVDA) was used to examine in detail the modulation of small molecule candidate biomarkers. We show that targeted profiling produces robust models, generates accurate metabolite concentration data, and provides data that can be used to help understand metabolic differences between healthy and disease population. Such metabolic signatures could provide diagnostic markers for a disease state or biomarkers for drug response phenotypes.

  • PDF

Purification and Spectroscopic Characterization of the Human Protein Tyrosine Kinase-6 SH3 Domain

  • Koo, Bon-Kyung;Kim, Min-Hyung;Lee, Seung-Taek;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.343-347
    • /
    • 2002
  • The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of $\beta$-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.