• Title/Summary/Keyword: NMP

Search Result 220, Processing Time 0.023 seconds

Electrochemical Characteristics of Microporous Polymer Electrolytes Based on Poly(vinylidene-co-hexafluoropropylene) (PVdF계 미세기공 고분자 전해질의 전기화학적 특성)

  • Jung Kang-Kook;Kim Jong-Uk;Ahn Jou-Hyeon;Kim Ki-Won;Ahn Hyo-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.183-188
    • /
    • 2004
  • In order to develop polymer electrolyte for lithium/sulfur batteries, highly microporous P(VdF-HFP) membranes were prepared by phase inversion method. Porous structure was controlled by extracting NMP with mixture of deionized water and methanol. Porous structure of the membranes was observed with SEM. Polymer electrolytes were prepared by soaking the porous membranes in 1M $LiCF_3SO_3-TEGDME/EC$. The ionic conductivity of polymer electrolyte was found to be at high as $2\times10^{-3}S/cm$ when the polymer membrane extracted by $80\%$ methanol was used. The microporous polymer electrolyte optimized in this work displayed high ionic conductivity, uniform pore size, low interfacial resistance and stable ionic conductivity with storage time. The ionic conductivity of polymer electrolytes was measured with various lithium salts, and the conductivity showed $3.3\times10^{-3}S/cm$ at room temperature when $LiPF_6$ was used as a lithium salt.

A Study of $C_9$-aldehyde Synthesis from n-Butene (노르말부텐으로부터 $C_9$-알데히드 합성에 관한 연구)

  • Jeon, Jong-Ki;Park, Seong-Ki;Park, Young-Kwon
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • The purpose of this study is to upgrade the catalysts for synthesizing mixed octenes using normal butene and the catalysts for synthesizing $C_9$-aldehyde through hydroformylation of mixed octenes with syngas. The in-line activation method with circulating activating solution was effective for activation of the $NiO/A1_{2}O_3$ catalyst. The reason for catalyst deactivation may be ascribed to physi-sorbed materials or oligomers which block pore entrance and then prevent active sites from participating a reaction. Continuous distillation apparatus was used for separating mixed octenes from dimerization products. When reflux ratio was above 3 : 1, mixed octene fraction of which purity was above 99.57% was obtained. In $C_9$-aldehyde synthesis through hydroformylation of mixed octenes, we investigated a performance of ligand which increased catalyst stability as well as activity of Co catalyst. The results indicated that TPPO, NMP, NDMA, and succinonitrile were suitable ligand for increasing initial activity and reducing loss of Co during catalyst recovery.

  • PDF

Preparation and Flame Retardancy of Poly(benzoxazole imide) Having Trifluoromethyl Group in the Main Chain (주사슬에 Trifluoromethyl 그룹을 갖는 Poly(benzoxazole imide)의 제조 및 난연 특성)

  • Yeom, Jin-Seok;Choi, Jae-Kon;Lee, Chang-Hoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.355-363
    • /
    • 2012
  • A series of poly(hydroxyamide)s (PHAs) having trifluoromethyl group were prepared by direct polycondensation of aromatic diimide-dicarboxylic acids with 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane by thionyl chloride and triethyl amine in N-methyl-2-pyrrolidinone (NMP). The PHAs exhibited inherent viscosity in the range of 0.54-0.96 dL/g at $35^{\circ}C$ in DMAc solution. All PHAs were readily soluble in a variety of organic solvents, whereas the polybenzoxazoles (PBOs) were quite insoluble except partially soluble in sulfuric acid. PHAs were converted to PBOs by thermal cycling reaction with heat of endotherm. The maximum weight loss temperature of the PHAs occurred in the range of $559-567^{\circ}C$. The PBOs showed relatively high char yields in the range of 47-59%. Pyrolysis Combustion Flow Calorimeter (PCFC) results of the PBOs showed 12-19 W/g heat release rate (HRR), and 2.7-3.6 kJ/g total heat release (total HR). The HRR of PBO 1 showed the lowest value of 12 W/g, which was 37% lower than that of PBO 3 (19 W/g).

Phase Behavior and Morphological Studies of Polysulfone Membranes; The Effect of Alcohols Used as a Non-solvent Coagulant (비용매 알코올 응고조를 이용한 폴리술폰 막의 상전이 거동 및 모폴로지 특성 연구)

  • Park Byung Gil;Kong Sung-Ho;Nam Sang Yong
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.272-280
    • /
    • 2005
  • In this study, asymmetric polysulfone membranes were prepared by the phase inversion method and the casting solutions were containing N-methyl-2-pyrrolidone (NMP) as a solvent. Deionized water and various alcohols(methanol, ethanol, and propanol) were used as a coagulation medium in preparing asymmetric polysulfone membranes. This study investigates the effect of alcohol coagulants having different solubility parameters as a pore-former on the construction of porous structures and their pure water permeation properties. Asymmetric polysulfone membranes immersed in the pure alcohol coagulation bath solution showed the typical sponge-like structures and the reduced water permeability as compared with those of polysulfone membranes precipitated in the pure water coagulation bath solution. In the water/alcohol mixtures, asymmetric polysulfone membranes showed the finger-like structures with the sponge-like structures. Therefore, the sponge-like structure of polysulfone membrane was formed under the delayed demixing systems while the porosity of membrane was decreased significantly. The water permeability of polysulfone membrane precipitated in the pure water coagulant showed 164 [$L/m^2hr$] at 14.7 psi. In case of polysulfone membranes prepared in the pure methanol and ethanol coagulant, they showed the water permeability of 56 and 30 [$L/m^2hr$], respectively.

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.

Comparative Characterization of AFC Precipitated Using Vacuum Drying, Dilution Precipitation and Spray Drying (감압건조, 희석침전, 분무건조 방식으로 제조된 무회분석탄의 특성)

  • Kwon, Ho Jung;Choi, Ho Kyung;Jo, Wan Taek;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.234-238
    • /
    • 2016
  • Solid ash-free coal (AFC) samples recovered from solvent-extracted solution by vacuum drying, dilution precipitation and spray drying methods were compared in terms of physical properties and chemical structure. AFC was prepared by using Kideco coal (Indonesian sub-bituminous coal) and polar N-methyl-2-pyrrolidone (NMP) solvent as raw materials. The physical properties of the AFCs were characterized with proximate, ultimate, and calorific value analysis. In analyzing the chemical structure, FTIR and NMR were used. the proximate analysis showed much reduced ash in the AFCs compared to parent raw coal. The FTIR result showed that the extraction solvent was not fully removed from the AFC prepared by vacuum drying. However, the solvent was not detected in the AFC recovered by using dilution precipitation. Dilution precipitation has advantages over the other two methods, since it can be done at relatively low temperature and separate ash-free coal from extraction solvent more effectively.

Characteristics of Coals Extracted Using Solvent at Mild and High Temperature Conditions (온순조건과 고온조건에서 용매 추출한 석탄의 특성 비교)

  • Park, Keun Yong;Choi, Ho Kyung;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Han;Lee, Si Hyun;Na, Byung Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.529-533
    • /
    • 2012
  • In this study, we compare various physicochemical properties of solvent extracted coals obtained at both mild and high temperature conditions. In order to characterize the extraction behavior, experiments were performed using a sub-bituminous coal (Kideco) and a polar solvent (N-methyl-2-pyrrolidinone, NMP), where the extraction temperature and the effect of solvent recycling were evaluated. As the extraction temperature increased up to $350^{\circ}C$, an extraction yield and a calorific value of the extracted coal increased, while an ash content of the extracted coal decreased. FT-IR results revealed that the surface of the coal extracted at $350^{\circ}C$ was found to contain more amide, aromatic ester, and aliphatic ether groups than that at the lower temperatures. The result of MALDI-TOF/MS analysis confirmed that the smaller molecules with 300~500 m/z were extracted at a mild condition, while the bigger molecules in the range of 500~1500 m/z were extracted at the high temperature.

A Study on the Improvement of the Electrochemical Performance of Graphite Anode by Controlling Properties of the Coating Pitch (코팅 피치의 물성제어를 통한 흑연 음극재의 전기화학 성능 향상 연구)

  • Kim, Bo Ra;Kim, Ji Hong;Kang, Seok Chang;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • A pitch coating method was proposed for the purpose of improving the electrochemical properties of natural graphite. The synthesis conditions of pitch coating were optimized via measuring electrochemical properties of pitch-coated graphite anodes. As the synthesis temperature increased, the thermal stability was improved in addition to an increase in the softening point and residual carbon weight. However, the synthesis temperature of 430 ℃ resulted in the synthesis of a large amount of NI (NMP Insoluble) due to excessive condensation reaction. As the surface uniformity and coating thickness increased due to high thermal stability, the initial coulombic efficiency and rate capability of the pitch-coated graphite were improved. However, the graphite coated with the pitch containing excessive NI showed lower electrochemical properties than the uncoated graphite. NI had low dispersibility and formed spheres after heat treatment, so it formed the heterogeneous and thicker SEI layer. The optimum conditions for forming a uniform surface and an appropriate coating layer were investigated.

Study on the Fiber Alignment using Vacuum Filtration Method (Vacuum Filtration method를 이용한 단섬유(short fiber) 배열 영향성 분석)

  • Sung-Kwon Lee;Moo-Sun Kim;Ho-Yong Lee;Sung-Woong Choi
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.162-166
    • /
    • 2023
  • Although composite materials are increasingly utilized in general high-strength structures, the demand of performance characteristics as the multifunctional materials has been increased especially in the area of complex electronic devices. While the heat dissipation properties of devices are typically required properties, control of thermal property of composite material especially in the vertical direction is one of the problems to be solved due to its lamination process. In this study, CFRP was manufactured using the Vacuum filtration method for three types of solvent and CFs. In the composite material manufacturing process, the effect of solvent was examined using three solvents where solvents are most frequently used for the dispersion of fibers. Morphology of fiber was observed through a microscope to confirm the arrangement of CFs in the vertical direction. The alignment of fiber was examined through the measurement of the thermal conductivity of the manufactured specimen. For the thermal conductivity measurement, the higher thermal conductivity was obtained with the lower aspect ratio of CF. For the thermal conductivity in the through-plane direction, 8.687 W/m·K, 10.322 W/m·K, and 13.005 W/m·K of thermal conductivity was measured in the DMF, NMP and Acetone, respectively.