비용매 알코올 응고조를 이용한 폴리술폰 막의 상전이 거동 및 모폴로지 특성 연구

Phase Behavior and Morphological Studies of Polysulfone Membranes; The Effect of Alcohols Used as a Non-solvent Coagulant

  • 박병길 (한양대학교 공과대학 화학공학과) ;
  • 공성호 (한양대학교 공과대학 화학공학과) ;
  • 남상용 (경상대학교 공과대학 고분자공학과)
  • Park Byung Gil (School of Chemical Engineering, College of Engineering Hanyang University) ;
  • Kong Sung-Ho (chool of Chemical Engineering, College of Engineering Hanyang University) ;
  • Nam Sang Yong (Department of Polymer Science and Engineering, Gyeongsang National University)
  • 발행 : 2005.12.01

초록

본 연구에서는 NMP용매를 사용하여 폴리술폰 용액을 캐스팅 하고 상전이 방법으로 비대칭성 폴리술폰 막을 제조하였다. 비대칭성 폴리술폰 막 제조 시 응고조로 물과 알코올(메탄올, 에탄올, 프로판올) 수용액을 사용하였다. 폴리술폰 막의 수투과도와 다공도를 조절하는 인자로 서로 다른 용해도 계수를 갖는 알코올의 영향에 대한 특성을 평가하였다. 알코올 응고조에서 제조된 비대칭성 폴리술폰 막은 전형적인 sponge-like 구조를 나타내었으며 물 응고조에서 제조된 폴리술폰 막은 알코올 응고조에서 제조된 폴리술폰 막보다 낮은 수투과도를 나타내었다. 물과 알코올의 혼합 응고조에서 생성된 비대칭성 폴리술폰 막은 finger-like 구조와 sponge-like 구조가 혼재되어 있음을 확인할 수 있었다. 즉, sponge-like 구조의 폴리술폰 막은 상전이 속도가 감소함에 따라 다공도가 현저하게 감소함을 알 수 있었다. 그 결과 물 응고조에서 제조된 폴리술폰 막의 수투과도는 14.7 psi에서 164 [$L/m^2hr$] 이고 메탄을 응고조와 에탄을 응고조에서 제조된 폴리술폰 막은 각각 56 [$L/m^2hr$]과 30 [$L/m^2hr$]를 나타내었다.

In this study, asymmetric polysulfone membranes were prepared by the phase inversion method and the casting solutions were containing N-methyl-2-pyrrolidone (NMP) as a solvent. Deionized water and various alcohols(methanol, ethanol, and propanol) were used as a coagulation medium in preparing asymmetric polysulfone membranes. This study investigates the effect of alcohol coagulants having different solubility parameters as a pore-former on the construction of porous structures and their pure water permeation properties. Asymmetric polysulfone membranes immersed in the pure alcohol coagulation bath solution showed the typical sponge-like structures and the reduced water permeability as compared with those of polysulfone membranes precipitated in the pure water coagulation bath solution. In the water/alcohol mixtures, asymmetric polysulfone membranes showed the finger-like structures with the sponge-like structures. Therefore, the sponge-like structure of polysulfone membrane was formed under the delayed demixing systems while the porosity of membrane was decreased significantly. The water permeability of polysulfone membrane precipitated in the pure water coagulant showed 164 [$L/m^2hr$] at 14.7 psi. In case of polysulfone membranes prepared in the pure methanol and ethanol coagulant, they showed the water permeability of 56 and 30 [$L/m^2hr$], respectively.

키워드

참고문헌

  1. S. Loeb and S. S ourirajan, 'Sea water demineralization by means of an osmotic membrane', Adv. Chem. Ser., 38, 117 (1963)
  2. M. Mulder, 'Basic Principles of Membrane Technology', Kluwer Academic Publishers, London (1996)
  3. K. Scott and R. Hughes, 'Industrial Membrane Separation Technology', Chapman & Hall, London (1996)
  4. R. E. Kesting, 'Synthetic Polymeric Membranes', Wiley, New York (1985)
  5. P. Van de Witte, P. J. Dikjkstra, J. W. A. Van den Berg, and J. Feijen, 'Phase separation processes in polymer solution in relation to membrane formation', J. Membr. Sci., 117, 1 (1996)
  6. T. H. Young and L. W. Chen, 'Pore mechanism of membrane from phase inversion process', Desalination, 103, 233 (1995)
  7. A. J. Reuvers and C. A. Smolders, 'Formation of membranes by means of immersion precipitation; Part I. A model to describe mass transfer during immersion precipitation', J. Membr. Sci., 34, 45 (1987)
  8. Y. S. Kang, H. J. Kim, and U. Y. Kim, 'Asymmetric membrane formation via immersion precipitation method; I. Kinetic effect', J. Membr. Sci., 60, 219 (1991)
  9. R. M. Boom, I. M. Wienk, T. Van den Boomgaard, and C. A. Smolders, 'Microstructures in phase inversion membranes; Part 2. The role of a polymeric additive', J. Membr, Sci., 73, 277 (1992)
  10. Y. K. Kim, J. M. Lee, H. B. Park, and Y. M. Lee, 'Carbon molecular sieve membranes derived from thermally labile polymer containing polyimide and their gas separation properties', Membrane J, 13, 182 (2003)
  11. J. H. Kim and K. H. Lee, 'Effect of PEG additive on membrane formation by phase inversion', J. Membr. Sci., 138, 153 (1998)
  12. D. M. Wang, F. C. Lin, T. T. Wu, and J. Y. Lai, 'Formation mechanism of the macrovoids induced by surfactant additives', J. Membr. Sci., 142, 191 (1998)
  13. J. Y. Lai, F. C. Lin, C. C. Wang, and D. M. Wang., 'Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes', J. Membr. Sci., 118, 49 (1996)
  14. J. Won, Y. S. Kang, H. C. Park, and U. Y. Kim, 'Light scattering and membrane formation studies on polysulfone solutions in NMP and in mixed solvents of NMP and ethyl acetate', J. Membr. Sci., 145, 45 (1998) https://doi.org/10.1016/S0376-7388(98)00056-8
  15. J. H. Kim, B. R. Min, H. C. Park, J. Won, and Y. S. Kang, 'Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion', J. Appl. Polym. Sci., 81, 3481 (2001) https://doi.org/10.1002/app.1407
  16. C. A. Smolders, A. J. Reuvers, R. M. Boom, and I. M. Wienk, 'Microstructures in phase-inversion membranes. Part 1: Formation of macrovoids', J. Memb. Sci., 73, 259 (1992)
  17. S. C. Pesek and W. J. Koros, 'Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation', J. Membr. Sci., 81, 71 (1993)
  18. A. Ziabicki, 'Fundamentals of Fiber Formation, The Science of Fiber Spinning and Drawing', Willey, pp. 300, (1976)
  19. C. W. Yao, R. P. Burford, A. G. Fane, and C. J. D. Fell, 'Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides', J. Memb. Sci., 38, 133 (1988)
  20. F. G. Paulsen, S. S. Shojaie, and W. B. Krantz, 'Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes'. J. Memb. Sci., 91, 265 (1994)
  21. R. J. Ray, W. B. Krantz, and R. L. Sani, 'Linear stability theory model for finger formation in asymmetric membranes', J. Memb. Sci., 23, 155 (1985)
  22. Nico Schamagl and Heinz Buschatz, 'Polyacrylonitrile (PAN) membranes for ultra- and microfiltration', Desalination, 139, 191 (2001)