• 제목/요약/키워드: NMDA Receptor

검색결과 218건 처리시간 0.037초

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.

결명자 에탄올 추출물이 알코올로 유도로 유도한 기억 장애에 미치는 영향 (Effect of an Ethanol Extract of Cassia obtusifolia Seeds on Alcohol-induced Memory Impairment)

  • 권희영;조은비;전지은;이영춘;김동현
    • 생명과학회지
    • /
    • 제29권5호
    • /
    • pp.564-569
    • /
    • 2019
  • 최근 알코올 소비량이 증가함에 따라 과량의 에탄올을 섭취하는 경우 또한 늘어나고 있다. 이런 과도한 에탄올 섭취는 ${\gamma}$-aminobutyric acid (GABA) 수용체의 활성화와 glutamate 수용체의 활성 억제를 통해 신경계를 교란시켜 단기 기억 형성을 방해 한다. 알코올에 의한 인지기능의 저하는 알코올성 black out을 유도할 수 있으며, 반복될 경우 알코올성 치매로 이어질 수 있기 때문에 black out을 예방하는 치료제의 개발이 필요하다. 따라서 본 연구자는 해당 연구를 통하여 Cassia obtusifolia seeds 에탄올 추출물(COE)이 가진 black out 예방제로써의 가능성을 평가하였다. 본 연구에서는 에탄올에 의해 유도된 기억 장애에 대한 COE의 효과를 확인하였다. 실험 동물의 기억력을 측정하기 위하여 수동 회피 실험과 Y자 미로 실험을 수행하였고, 마우스 해마 절편을 사용하여 에탄올이 기억의 형성과 관련하여 장기 강화(long term potentiation; LTP)에 어떠한 영향을 끼치는지 전기생리학을 통해 확인하였다. 또한 ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 수용체 길항제인 NBQX ($50{\mu}M$)를 사용하여 에탄올에 의한 인지기능 장애와 관련이 있다고 알려진 N-Methyl-D-aspartate (NMDA) 매개 field 흥분성 시냅스 후 전위를 측정하였다. 결과적으로, COE는 에탄올에 의한 기억력의 손상을 방지하였고, 해마 절편에서 에탄올에 의해 감소된 LTP와 NMDA 매개 흥분성 시냅스 후 전위를 대조군과 비슷한 수준까지 회복시켰다.

2-chloroprocaine에 의한 쥐좌골신경 차단시 발생한 급성내성에 대한 Dextromethorphan의 영향 (Effects of Dextromethorphan on the Development of Tachyphylaxis to Sciatic Nerve Blockade Induced by 2-Chloroprocaine in the Rat)

  • 박명수;이강창;김태요
    • The Korean Journal of Pain
    • /
    • 제9권1호
    • /
    • pp.39-45
    • /
    • 1996
  • Tachyphylaxis to local anesthetics has shown to be promote longer interanalgesic intervals between injections. Previous study demonstrated thermal hyperalgesia accelerates development of tachyphylaxis to sciatic nerve blockade in rats, while MK-801 prevents development of tachyphylaxis. Dextromethorphan is one of NMDA receptor antagonist similar to MK-801. A hypothesis that dextromethorphan would prevent the development of tachyphylaxis was tested in this study. A catheter was surgically implanted along the sciatic nerve a in rat. After recovery from surgery, the animal received repeated injections of 3% 2-chloroprocaine followed by motor block testing with or without hot-plate testing at $56^{\circ}C$. In other experiments, dextromethorphan was administrered by intraperiotneal injection prior to an injection of local anesthetic therough the implanted catheter. Sensory and motor testing was then carried out. Rats injected with 2-chloroprocaine and subjected to hot-plate testing, developed tachyphylaxis to motor and sensory blockade. However, animals pretreated with dextromethorphan did not develop tachyphylaxis over series of three injections. Dextromethorphan seems to prevent development of tachyphylaxis to sciatic nerve blockade in this rat model. Dextromethorphan, one of N-Methyl-D-aspartate receptor antagonist, can be applied to prolong the effect of local anesthetic.

  • PDF

Neuroprotective Effect of Acanthopanax sessiliflorus against Toxicity Induced by N-Methyl-D-Aspartate in Rat Organotypic Hippocampal Slice Culture

  • Lee, Pyeong-Jae;Lee, Sang-Hyun;Choi, Sang-Yoon;Son, Dong-Wook
    • Natural Product Sciences
    • /
    • 제11권3호
    • /
    • pp.179-182
    • /
    • 2005
  • We investigated that water extract of Acanthopanax sessiliflorus roots rescued the N-methyl-D-aspartate (NMDA), agonist of glutamate receptor, -induced toxicity in rat organotypic hippocampal slice culture. When the cell death in NMDA only-treated hippocampal slices was set 100%, A. sessiliflorus decreased the cell death to 75.4, 51.6, 48.9, and 40.6% at 1, 10, 50, and $100\;{\mu}g/ml$ treatment, respectively. On the basis of these results, the water extract of A. sessiliflorus roots may be a preventive agent against NMDA-induced cytotoxicity.

Redox-modulation of NMDA receptor activity by nitric oxide congeners

  • Kim, Won-Ki;Stuart A. Lipton
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.125-132
    • /
    • 1995
  • In neurons, nitric oxide(NO) is produced by neuronal nitric oxide synthase following stimulation of N-methyl-D-aspartate(NMDA) receptors and the subsequent influx of Ca$\^$2+/. NO, induced in this manner, reportedly plays critical roles in neuronal plasticity, including neurite outgrowth, synaptic transmission, and long-term potentiation(LTP) (1-7). However, excessive activation of NMDA receptors has also been shown to be associated with various neurological disorders, including focal ischemia, epilepsy, trauma, neuropathic pain and chronic neurodegenerative maladies, such as Parkinson's disease, Hungtington's disease and amyotrophic lateral sclerosis(8). The paradox that nitric oxide(NO) has both neuroprotective and neurodestructive effects may be explained, at least in part, by the finding that NO effects on neurons are dependent on the redox state. This claim may be supported by the recent finding that tissue concentrations of cysteine approach 700 ${\mu}$M in settings of cerebral ischemia (9), levels of thiol that is expected to influence both the redox state of the system and the NO group itself(10).

  • PDF

The Effects of Glutamate NMDA Receptor Antagonist MK-801 on Gastrointestinal Motility after Middle Cerebral Artery Occlusion in Rats

  • Ameer, Nasir Hussin;Lee, Jae-Hee;Choi, Myoung-Ae;Jin, Guang-Shi;Kim, Min-Sun;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.151-156
    • /
    • 2010
  • This study was performed to investigate the role of glutamate neurotransmitter system on gastrointestinal motility in a middle cerebral artery occlusion (MCAO) model of rats. The right middle cerebral artery was occluded by surgical operation, and intestinal transit and geometric center as a parameter of gastrointestinal motility and expression of c-Fos protein in the insular cortex and cingulate cortex were measured at 2 and 12 h after MCAO. Intestinal transit was $66.3{\pm}7.5%$ and $62.3{\pm}5.7%$ 2 and 12 h after sham operation, respectively, and MCAO significantly decreased intestinal transit to $39.0{\pm}3.5%$ and $47.0{\pm}5.1%$ at 2 and 12 h after the occlusion, respectively (p<0.01). The geometric center was $5.6{\pm}0.4$ and $5.2{\pm}0.9$ at 2 and 12 h after sham operation, respectively, and MCAO significantly decreased geometric center to $2.9{\pm}0.8$ and $3.0{\pm}0.3$ at 2 and 12 h after the occlusion, respectively (p<0.01). In control animals, injection of atropine decreased intestinal transit to $35.9{\pm}5.2%$, and injection of glutamate NMDA receptor antagonist, MK-801, decreased intestinal transit to $28.8{\pm}9.5%$. Pretreatment with MK-801, a glutamate NMDA receptor antagonist, in the MCAO group decreased intestinal transit to $11.8{\pm}3.2%$, which was significantly decreased compared to MCAO group (p<0.01). MCAO markedly increased the expression of c-Fos protein in the insular cortex and cingulate cortex ipsilateral to the occlusion 2 h after MCAO, and pretreatment with MK-801 produced marked reduction of c-Fos protein expression compared to MCAO group (p<0.01). These results suggest that modulation of gastrointestinal motility after MCAO might be partially mediated through a glutamate NMDA receptor system.

Mechanism of Glutamate-induced $[Ca^{2+}]i$ Increase in Substantia Gelatinosa Neurons of Juvenile Rats

  • Jung, Sung-Jun;Choi, Jeong-Sook;Kwak, Ji-Yeon;Kim, Jun;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.53-57
    • /
    • 2003
  • The glutamate receptors (GluRs) are key receptors for modulatory synaptic events in the central nervous system. It has been reported that glutamate increases the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) and induces cytotoxicity. In the present study, we investigated whether the glutamate-induced $[Ca^{2+}]_i$ increase was associated with the activation of ionotropic (iGluR) and metabotropic GluRs (mGluR) in substantia gelatinosa neurons, using spinal cord slice of juvenile rats (10${\sim}21 day). $[Ca^{2+}]_i$ was measured using conventional imaging techniques, which was combined with whole-cell patch clamp recording by incorporating fura-2 in the patch pipette. At physiological concentration of extracellular $Ca^{2+}$, the inward current and $[Ca^{2+}]_i$ increase were induced by membrane depolarization and application of glutamate. Dose-response relationship with glutamate was observed in both $Ca^{2+}$ signal and inward current. The glutamate-induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV was blocked by CNQX, an AMPA receptor blocker, but not by AP-5, a NMDA receptor blocker. The glutamate-induced $[Ca^{2+}]_i$ increase in $Ca^{2+}$ free condition was not affected by iGluR blockers. A selective mGluR (group I) agonist, RS-3,5-dihydroxyphenylglycine (DHPG), induced $[Ca^{2+}]_i$ increase at holding potential of -70 mV in SG neurons. These findings suggest that the glutamate-induced $[Ca^{2+}]_i$ increase is associated with AMPA-sensitive iGluR and group I mGluR in SG neurons of rats.

Glutamate Receptor Abnormalities in Schizophrenia: Implications for Innovative Treatments

  • Rubio, Maria D.;Drummond, Jana B.;Meador-Woodruff, James H.
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.1-18
    • /
    • 2012
  • Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specifi c changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.