• Title/Summary/Keyword: NMDA (N-Methyl-D-aspartate)

Search Result 135, Processing Time 0.026 seconds

Effects of L-trans-pyrrolidine-2,4-dicarboxylate, a Glutamate Uptake Inhibitor, on NMDA Receptor-mediated Calcium Influx and Extracellular Glutamate Accumulation in Cultured Cerebellar Granule Neurons

  • Oh, Seikwan;Shin, Chang-Sik;Patrick-P. McCaslin;Seong, Yeon-Hee;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • Glutamate uptake inhibitor, L-trans-pyrrolidine-2, 4-dicarboxylate (PDC, $20{\mu}M$) elevated basal and N-methyl-D-aspartate (NMDA, $100{\mu}M$)-induced extracellular glutamate accumulation, while it did not augment kainate $100{\mu}M$-induced glutamate accumulation in cultured cerebellar granule neurons. However, pretreatment with PDC for 1 h significantly reduced NMDA-induced glutamate accumulation, but did not affect kainate-induced response. Pretreatment with glutamate $(5{\mu}M)$ for 1 h also reduced NMDA-induced glutamate accumulation, but did not kainate-induced response. Upon a brief application (3-10 min), PDC did neither induce elevation of intracellular calcium concentration $([Ca^{2+}]_i)$ nor modulate NMDA-indLiced $[Ca^{2+}]_1$ elevation. Pretreatment with PDC for 1 h reduced NMDA-induced $[Ca^{2+}]_1$ elevation, but it did not reduce kainate-induced $[Ca^{2+}]_1$ elevation. These results suggest that glutamate concentration in synaptic clefts of neurana cells is increased by prolonged exposure (1 h) of the cells to PDC, and the accumulated glutamate subsequently induces selective desensitization of NMDA receptor.

  • PDF

THE EFFECT OF DIFFERENTIAL MODULATION OF N-METHYL-D-ASPART ATE RECEPTOR ON THE VIABILITY OF PRIMARY CULTURED NORMAL HUMAN ORAL KERATINOCYTES (N-methyl-D-aspartate 수용기의 다양한 조절이 일차 배양된 정상사람구강각화세포의 생존에 미치는 영향)

  • Kim, In-Soo;Lee, Won;Kim, Seong-Hun;Choi, Bohm
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.4
    • /
    • pp.277-286
    • /
    • 2006
  • In the present study, I investigated the effects of N-methyl-D-aspartate (NMDA), arachidonic acid (AA), and Nitric Oxide Synthase Inhibitor (NOS-I), alone or in combination, on the viability of cultured primary normal human oral keratinocytes (NHOK). Specifically, we examined whether AA and NOS-I could protect primary NHOK from glutamate cytotoxicity. The purpose of this study was therefore the preliminary study for the examination of the interaction between these agents and NHOK in order to elucidate the mechanisms by which epithelial growth and regeneration are regulated. NHOK were obtained from gingival tissue of 20 individuals aged 20 to 29, and third passage (P3) cells were used for this study. Cell viability was measured by the MTT assay. NMDA and NNA, a calcium dependent NOS inhibitor, induced an initial increase in cell number, which subsequently decreased by the $7^{th}$ day. Low concentration of AA ($0.5\;{\mu}M$ & $1\;{\mu}M$) induced an increase in cell number while high concentrations of AA ($5\;{\mu}M$ & $10\;{\mu}M$) induced a decrease in cell number. The decrease in cell number induced by NMDA at the $7^{th}$ day was abolished by the addition of low concentrations of AA ($0.5\;{\mu}M$ & $1\;{\mu}M$) or NOS inhibitors. Low concentrations of AA ($0.5\;{\mu}M$ & $1\;{\mu}M$) or NOS inhibitors may protect the NHOK from NMDA induced cytotoxicity. These reactions might be related to the NMDA receptor in the cell and the change of the intracellular calcium ion concentration.

Distinct $[^3H]$MK-801 Binding Profiles with the Agonist, Partial Agonist, and Antagonist Acting at the Glycine Binding Site of the N-Methyl-D-Aspartate Receptor

  • Cho, Jung-sook;Park, No-Sang;Kong, Jae-Yang
    • Biomolecules & Therapeutics
    • /
    • v.4 no.2
    • /
    • pp.196-201
    • /
    • 1996
  • The N-methyl-D-aspartate (NMDA) receptor-ion channel complex is activated by the simultaneous presence of L-glutamate and glycine, allowing the binding of MK-801 to the phencyclidine (PCP) site of the receptor. The $[^3H]$MK-801 binding assay system was established for determination of pharmacological functions of test compounds acting at the glycine site of the receptor. The binding in the presence of 0.1 $\mu$M L-glutamate was increased by an agonist (glycine) in a dose-dependent fashion, while decreased by either partial agonist (R-(+)-HA-966) or antagonist (5,7-dichlorokynurenic acid: 5,7-DCKA). To distinguish partial agonism from antagonism, various concentrations of 7-chlorokynurenic acid (7-CKA) were added in the assay to eliminate the interference of the endogenous glycine present in the membrane preparations. The bindings in the presence of L-glutamate (0.1$\muM$) and 7-CKA (1, 5, or 10$\muM$) were increased by R-(+)-HA-966. Being a weak partial agonist, the extent of potentiation was much less than that by the agonist. These binding profiles were clearly distinguishable from those by the antagonist, 5,7-DCKA, which exhibited no intrinsic activity. The binding assays established in the present study are a useful system to classify ligands acting at the glycine site of the NMDA receptor by their pharmacological functions.

  • PDF

Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury (신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호)

  • Jang, Yoon-Jung;Seo, Eok-Su;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • Purpose: Erythropoietin (EPO) has neuroprotective effects in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity. Current studies have demonstrated the neuroprotective effects of EPO, but limited data are available for the neonatal periods. Here in we investigated whether recombinant human EPO (rHuEPO) can protect the developing rat brain from HI injury via modulation of NMDA receptors. Methods: In an in vitro model, embryonic cortical neuronal cell cultures from Sprague-Dawley (SD) rats at 19-days gestation were established. The cultured cells were divided into five groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated (H+E1, H+ E10, and H+E100) groups. To estimate cell viability and growth, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was done. In an in vivo model, left carotid artery ligation was performed on 7-day-old SD rat pups. The animals were divided into six groups; normoxia control (NC), normoxia Sham-operated (NS), hypoxia-ischemia only (H), hypoxia-ischemia+vehicle (HV), hypoxia-ischemia+rHuEPO before a HI injury (HE-B), and hypoxia-ischemia+rHuEPO after a HI injury (HE-A). The morphologic changes following brain injuries were noted using hematoxylin and eosin (H/E) staining. Real-time PCR using primers of subunits of NMDA receptors (NR1, NR2A, NR2B, NR2C and NR2D) mRNA were performed. Results: Cell viability in the H group was decreased to less than 60% of that in the N group. In the H+E1 and H+E10 groups, cell viability was increased to >80% of the N group, but cell viability in the H+E100 group did not recover. The percentage of the left hemisphere area compared the to the right hemisphere area were 98.9% in the NC group, 99.1% in the NS group, 57.1% in the H group, 57.0% in the HV group, 87.6% in the HE-B group, and 91.6% in the HE-A group. Real-time PCR analysis of the expressions of subunits of NMDA receptors mRNAs in the in vitro and in vivo neonatal HI brain injuries generally revealed that the expression in the H group was decreased compared to the N group and the expressions in the rHuEPO-treated groups was increased compared to the H group. Conclusion: rHuEPO has neuroprotective property in perinatal HI brain injury via modulation of N-methyl-D-aspartate receptors.

Modulation of Sarcodon Aspratus on lon Currents-induced by Excitatory Neurotransmitters in Rat Periaqueductal Gray Neurons

  • Kim, Sung-Tae;Sung, Yun-Hee;Kim, Chang-Ju;Joo, Kwan-Joong;Han, Seung-Ho;Lee, Choong-Yeol;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1672-1677
    • /
    • 2006
  • Sarcodon aspratus is the mushroom of Telephoracea which was been classified into Alphllophorales. The aqueous extract of Sarcodon aspratus in known to have anti-tumor activity, immune modulatory effect, and anti-oxidative action. The descending pain control system consists of three major components: the periaqueductal gray (PAG) of the midbrain, the rostroventral medulla including the nucleus raphe magnus, and the spinal dorsal horn. Glutamate is the primary excitatory neurotransmitter in the brain. Glutamate ionotropic receptors are classified as N-methyl-D-aspartate (NMDA) receptor, ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor, and kainate receptor. In the present study, the modulation of Sarcodon aspratus on the ion currents activated by glutamate, NMDA, AMPA, and kainate in the acutely dissociated PAG neurons was investigated by nystatin-perforated patch-clamp technique under boltage-clamp condition. Sarcodon aspratus increased glutamate- and NMDA-induced ion currents were not increased by Sarcodon aspratus. The present results show that Sarcodon aspratus may activate the descending pain control system in rat PAG neurons through NMDA receptor.

Involvement of Serine Phosphorylation of Spinal Cord NR-2B Subunit of the N-methyl-D-aspartate Receptor Following Electroacupuncture Stimulation (전침자극이 척수 N-methy1-D-aspartate receptor외 NR-2B Subunit 인산화에 미치는 영향)

  • Kang, Byeol-Rim;Choi, Byung-Tae;Yoon, Hyun-Min;Min, Young-Kwang;Ahn, Chang-Beohn
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2007
  • 목적 : 저주파에 해당하는 2Hz 전침 자극이 척수 N-methyl-D-aspartate receptor (NMDAR)의 NR-2B subunit의 발현 및 인산화에 미치는 영향을 조사하였다. 방법 : Sprague-Dawley계 흰쥐를 Storkson등의 방법에 의해 척수막의 지주막하강에 catheter를 삽입하는 수술을 행한 후 마비등의 척수 손상을 나타내지 않는 개체를 대상으로 하였다. N-methyl-D-aspartate (NMDA) antagonist인 D-2-amino-5- phosphonopentanoic acid (AP-5)를 투여한 후 족삼리와 삼음교에 해당하는 부위에 30분간 전침 자극하였다. 무통각 여부는 hot plate test를 시행하였으며 NMDAR NR-2 subunit 발현과 인산화 여부는 Western blot과 면역조직화학적으로 살펴보았다. 결과 : 전침 무통각은 전침 자극 후 180분 후까지 지속되었으며 NMDA antagonist인 AP-5를 투여하였을 때 전침 무통각이 저하되었으나 유의성은 나타내지 않았다. Western blot 분석으로 보아 NMDAR NR-2B 및 인산화 NR-2B의 발현은 전침자극에 의해 미약한 증가를 보이나 AP-5투여에 의해 현저한 저해를 보였다. 면역조직화학에 의한 척수배각 구역별 발현을 보면 NMDAR NR-2B 및 인산화 NR-2B는 전 배각에 걸쳐 관찰되나 경부(층판 V-VI)에서 약한 반응을 보였다. 전침 자극에 의한 각 군별 NR-2B 발현은 유의한 차이를 보여 주지 않았으나 인산화 NR-2B는 천층(층판I-II) 및 고유핵 층판(III-IV)에서 유의성 있는 증가를 보였다. 전침 자극시 AP-5 투여는 유의성은 보이지 않았으나 인산화 NR-2B 발현을 저해하였다. 결론: 저주파 2Hz 전침에 의한 무통각은 NMDA antagonist인 AP-5 투여에 의해 저해될 뿐 아니라 NMDAR NR-2B subunit의 인산화를 저해하는 것으로 보아 전침 무통각의 과정에 NMDAR 및 NMDAR NR-2B의 인산화가 관여함을 알 수 있다.

  • PDF

Isolated Leptomeningeal Enhancement in Anti-N-Methyl D-Aspartate Receptor Encephalitis: The Diagnostic Value of Contrast-Enhanced Fluid-Attenuated Inversion Recovery Imaging (항-NMDA 수용체 항체와 관련된 뇌염에서 단독 연수막 조영증강: 조영증강 유체감쇠반전회복기법 영상의 진단적 가치)

  • Jun Kyeong Park;Eun Ja Lee;Kwang Ki Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.4
    • /
    • pp.945-950
    • /
    • 2022
  • Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a common autoimmune encephalitis that is noted to be a severe but treatable disease entity. Patients with anti-NMDAR encephalitis often develop psychotic symptoms, including delusions, hallucinations, and paranoia, as well as memory impairment and persistent loss of attention. However, MRI findings in such patients show no abnormalities in most cases. Although typical brain abnormality features, known as T2 hyperintensities, involve the brain parenchyma and contrast enhancement at the cerebral cortex or overlying meninges, isolated leptomeningeal enhancement has been rarely reported in anti-NMDAR encephalitis. Herein, we report a patient with anti-NMDAR encephalitis who presented with isolated leptomeningeal enhancement, additionally showing the diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging.

Ketamine as a Rapid-Acting Antidepressant (케타민의 빠른 항우울효과)

  • Oh, Daeyoung
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.2
    • /
    • pp.29-30
    • /
    • 2013
  • First-line therapy of depression is a pharmacological treatment. Many prescribed antidepressants modulate monoamine neurotransmitters including serotonin, norepinephrine and dopamine. Recently, Ketamine, an N-methyl-D-aspartate receptor antagonist, has received attention and has been investigated for clinical trials and neurobiological studies. Here, I introduce ketamine as a rapid-acting antidepressant.

NMDA (n-methyl-d-aspartate) Change Expression Level of Transcription Factors (Egr-1, c-jun, Junb, Fosb) mRNA in the Cerebellum Tissue of Balb/c Mouse (NMDA투여에 의한 transcription factor (Egr-1, C-Jun, JunB, FosB)의 발현 변화 양상)

  • Ha, Jong-Su;Kim, Jae-Wha;Song, Jae-Chan
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1043-1050
    • /
    • 2015
  • Glutamate is one of the principle transmitters in the CNS. Ionotropic receptors of glutamate, selectively activated by N-methyl-D-aspartate (NMDA), play an important role in the processes of cell development, learning, memory, and etc. On the other hand, many studies discovered that over-activation of glutamate receptors leads to neurodegeneration and are known to be implicated in major areas of brain pathology. Any sustained effect of a transient NMDA receptor activation is likely to involve signaling to the nucleus and to trigger coordinated changes in gene expression. Classically, a set of immediate-early genes are induced first; some of genes are by themselves transcription factors that control expression of other target genes. This study provides understanding of changes of inducible transcription factors mRNA levels with RT-PCR by inducing over-activation of NMDA receptor with intraperitoneal NMDA injection. The experimental conditions were varied by 1, 5, 25, and 125 g/ of body weight NMDA and measured transcription factors mRNA levels are Egr-1, c-Jun, JunB, and FosB. Based on result obtained, inducible transcription factors mRNA in NMDA injection to mice with 5 g/body weight showed the greatest change. And ITF mRNA showed greatest change 24 hr after injection. The expression level of JunB mRNA was markedly changed. Up to the present days, no study clearly understood how ITF mRNA affected the apoptosis of purkinje cells in the cerebellum. The current study improves the understanding of the mechanism of apoptosis of purkinje cells in the cerebellum.

Effects of Cholinesterase Inhibitors on Neuronal Injuries in Primary Cultured Rat Cortical Cells (배양한 대뇌피질세포에서 유발한 신경손상에 대한 콜린에스테라제 억제제의 영향)

  • 독고향;이광헌;조정숙
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.185-191
    • /
    • 2002
  • Alzheimer's disease (AD) involves neuronal degeneration with impaired cholinergic transmission, particularly in areas of the brain associated with learning and memory. Several cholinesterase inhibitors are widely prescribed to ameliorate the cognitive deficits in AD patients. In an attempt to examine if tacrine and donepezil, two well-known cholinesterase inhibitors, exhibit additional pharmacological actions in primary cultured rat cortical cells, we investigated the effects on neuronal injuries induced by glutamate or N-methyl-D-aspartate (NMDA), $\beta$-amyloid fragment ( $A_{{beta}25-35)}$), and various oxidative insults. Both tacrine and donepezil did not significantly inhibit the excitotoxic neuronal damage induced by glutamate. However, tacrine inhibited the toxicity induced by NMDA in a concentration-dependent fashion. In addition, tacrine significantly inhibited the $A_{{beta}25-35)}$-induced neuronal injury at the concentration of 50 $\mu$M. In contrast, donepezil did not reduce the NMDA- nor $A_{{beta}25-35)}$-induced neuronal injury. Tacrine and donepezil had no effects on oxidative neuronal injuries in cultures nor on lipid peroxidation in vitro. These results suggest that, in addition to its anticholinesterase activity, the neuroprotective effects by tacrine against the NMDA- and $A_{{beta}25-35)$-induced toxicity may be beneficial for the treatment of AD. In contrast, the potent and selective inhibition of central acetylcholinesterase appears to be the major action mechanism of donepezil.