• 제목/요약/키워드: NKG2A Receptor

검색결과 6건 처리시간 0.017초

k-ras와 c-myc, wnt 억제에 의한 NKG2D 리간드의 발현변화 (Inhibition of Oncogenes Affects the Expression of NKG2D Ligands in Cancer Cells)

  • 허웅;이영신;배재호
    • 생명과학회지
    • /
    • 제23권10호
    • /
    • pp.1216-1222
    • /
    • 2013
  • 자연살상세포(NK cells)은 림프구계의 세포로서 외부 침임 병원균을 막고 체내 형질변환세포를 제거하는데 참여하고 있다. 이러한 자연살상세포의 활성은 특정한 항원이 필요 없고 활성화 신호와 억제성 신호의 균형에 의해 조절되고 있다. 자연살상세포의 중요한 활성화 신호 중의 하나는 NKG2D 수용체를 통한 것인데, 이 NKG2D 수용체를 통해 자연살상세포는 암세포에 있는 NKG2D 리간드를 인식할 수 있다. 지금까지 인간에서는 여덟개의 NKG2D 리간드가 밝혀져 있고 이러한 리간드의 발현은 다양한 기전을 엄격하게 조절되고 있다. 암세포는 암유전자(oncogenes)에 의해 세포내 다양한 유전자의 발현이 정상세포와 확연히 달라지는데, 이러한 암유전자에 의해서 NKG2D 리간드의 발현이 영향을 받을 것으로 생각되어 진다. 이 연구는 인간의 암세포에서 가장 자주 발현되는 세가지 암유전자 k-ras와 c-myc, wnt의 억제를 통해 NKG2D 리간드의 발현이 어떻게 변화되는 지를 알아보았다. k-ras와 c-myc의 억제는 NKG2D 리간드의 발현을 효과적을 증가시켰고 암세포가 자연살상세포에 더욱 잘 죽게 변화되었다. 그러나 wnt 억제는 MICA와 ULBP1의 전사를 감소시켰다. wnt 억제에 의한 NKG2D 리간드의 전사억제에도 불구하고 세포막의 단백질 발현은 변하지 않아서 암세포의 자연살상세포에 대한 감수성은 별다른 변화를 보이지 않았다. 따라서 k-ras와 c-myc, wnt 억제는 각각 다른 반응을 보였으며 최종적인 자연살상세포에 대한 감수성은 NKG2D 리간드의 세포표면단백질 발현정도에 의해 결정됨을 알 수 있었다.

Interleukin-18 Synergism with Interleukin-2 in Cytotoxicity and NKG2D Expression of Human Natural Killer Cells

  • Qi, Yuan-Ying;Lu, Chao;Ju, Ying;Wang, Zi-E;Li, Yuan-Tang;Shen, Ya-Juan;Lu, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7857-7861
    • /
    • 2014
  • Natural killer (NK) cells play an important role in anti-tumor immunity. Interleukin (IL)-18 is an immunoregulatory cytokine that induces potent NK cell-dependent anti-tumor responses when administrated with other cytokines. In this study, we explored the effects of combining IL-18 and IL-2 on NK cytotoxicity as well as expression levels of the NK cell receptor NKG2D in vitro. Freshly isolated PBMCs were incubated for 48 h with IL-18 and IL-2, then CD107a expression on $CD3^-CD56^+$ NK cells was determined by three-colour flow cytometry to evaluate the cytotoxicity of NK cells against human erythroleukemia K562 cells and human colon carcinoma HT29 cells. Flow cytometric analysis was also employed to determine NKG2D expression on NK cells. The combined use of IL-18 and IL-2 significantly increased CD107a expression on NK cells compared with using IL-18 or IL-2 alone, suggesting that the combination of these two cytokines exerted synergistic enhancement of NK cytotoxicity. IL-18 also enhanced NKG2D expression on NK cells when administered with IL-2. In addition, blockade of NKG2D signaling with NKG2D-blocking antibody attenuated the up-regulatory effect of combining IL-18 and IL-2 on NK cytolysis. Our data revealed that IL-18 synergized with IL-2 to dramatically enhance the cytolytic activity of human NK cells in a NKG2D-dependent manner. The results appear encouraging for the use of combined IL-18 and IL-2 in tumor immunotherapy.

Human CD8+ T-Cell Populations That Express Natural Killer Receptors

  • June-Young Koh;Dong-Uk Kim;Bae-Hyeon Moon;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.8.1-8.13
    • /
    • 2023
  • CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.

COVID-19 Vaccination Alters NK Cell Dynamics and Transiently Reduces HBsAg Titers Among Patients With Chronic Hepatitis B

  • Hyunjae Shin;Ha Seok Lee;Ji Yun Noh;June-Young Koh;So-Young Kim;Jeayeon Park;Sung Won Chung;Moon Haeng Hur;Min Kyung Park;Yun Bin Lee;Yoon Jun Kim;Jung-Hwan Yoon;Jae-Hoon Ko;Kyong Ran Peck;Joon Young Song;Eui-Cheol Shin;Jeong-Hoon Lee
    • IMMUNE NETWORK
    • /
    • 제23권5호
    • /
    • pp.39.1-39.15
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) vaccination may non-specifically alter the host immune system. This study aimed to evaluate the effect of COVID-19 vaccination on hepatitis B surface Ag (HBsAg) titer and host immunity in chronic hepatitis B (CHB) patients. Consecutive 2,797 CHB patients who had serial HBsAg measurements during antiviral treatment were included in this study. Changes in the HBsAg levels after COVID-19 vaccination were analyzed. The dynamics of NK cells following COVID-19 vaccination were also examined using serial blood samples collected prospectively from 25 healthy volunteers. Vaccinated CHB patients (n=2,329) had significantly lower HBsAg levels 1-30 days post-vaccination compared to baseline (median, -21.4 IU/ml from baseline), but the levels reverted to baseline by 91-180 days (median, -3.8 IU/ml). The velocity of the HBsAg decline was transiently accelerated within 30 days after vaccination (median velocity: -0.06, -0.39, and -0.04 log10 IU/ml/year in pre-vaccination period, days 1-30, and days 31-90, respectively). In contrast, unvaccinated patients (n=468) had no change in HBsAg levels. Flow cytometric analysis showed that the frequency of NK cells expressing NKG2A, an NK inhibitory receptor, significantly decreased within 7 days after the first dose of COVID-19 vaccine (median, -13.1% from baseline; p<0.001). The decrease in the frequency of NKG2A+ NK cells was observed in the CD56dimCD16+ NK cell population regardless of type of COVID-19 vaccine. COVID-19 vaccination leads to a rapid, transient decline in HBsAg titer and a decrease in the frequency of NKG2A+ NK cells.

The Poly-γ-ᴅ-Glutamic Acid Capsule of Bacillus licheniformis, a Surrogate of Bacillus anthracis Capsule Induces Interferon-Gamma Production in NK Cells through Interactions with Macrophages

  • Lee, Hae-Ri;Jeon, Jun Ho;Rhie, Gi-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.1032-1037
    • /
    • 2017
  • The poly-${\gamma}$-$\small{D}$-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, provides protection of the bacterium from phagocytosis and allows its unimpeded growth in the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages stimulated with the PGA capsule of Bacillus licheniformis, a surrogate of the B. anthracis capsule. PGA induced interferon-gamma production from NK cells cultured with macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The results showed that PGA could enhance NK cell activation by inducing IL-12 production in macrophages and a contact-dependent crosstalk with macrophages.

개 유선종양세포에 대한 자연살해세포 독성 (Cytotoxicity of natural killer cells on canine mammary carcinoma cells)

  • 정다운;변정수;구나연;정문희;김은희;김형석;조인수;송재영;현방훈;이지현
    • 대한수의학회지
    • /
    • 제60권1호
    • /
    • pp.25-32
    • /
    • 2020
  • Natural killer (NK) cells play have a crucial role in the early phase of immune responses against various pathogens. We compared characteristics of canine NK cells against two canine mammary carcinoma cell lines, REM134 and CF41.Mg. REM134 showed higher expression of progesterone receptor, proliferative cell nuclear antigen, Ki67, multiple drug resistance, Bmi-1, c-myc, E-cadherin, and human epidermal growth factor receptor type-2 than that of CF41.Mg. For specific expansion and activation of NK cells, we isolated CD5 negative cells from canine peripheral blood mononuclear cells and co-cultured K562 cells in the presence of interleukin (IL)-2, IL-15, and IL-21 for 21 days. As a result, we found that expression markers of activated NK cells such as NKp30, NKp44, NKp46, NKG2D, CD244, perforin, granzyme B, and tumor necrosis factor alpha were highly upregulated. In addition, we found there was upregulated production of interferon gamma of activated NK cells against target cells such as REM134 and CF41.Mg. Specifically, we observed that cytotoxicity of NK cells against target cells was more sensitively reacted to CF41.Mg than REM134. Based on the results of this study, we recommend the development of an experimental application of CF41Mg, which has not been reported in canine mammary carcinoma research.