• 제목/요약/키워드: NK Cell Therapy

검색결과 41건 처리시간 0.024초

Post-transcriptional Regulation of NK Cell Activation

  • Kim, Tae-Don;Park, Ju-Yeong;Choi, In-Pyo
    • IMMUNE NETWORK
    • /
    • 제9권4호
    • /
    • pp.115-121
    • /
    • 2009
  • Natural killer (NK) cells play key roles in innate and adaptive immune defenses. NK cell responses are mediated by two major mechanisms: the direct cytolysis of target cells, and immune regulation by production of various cytokines. Many previous reports show that the complex NK cell activation process requires de novo gene expression regulated at both transcriptional and post-transcriptional levels. Specialized un-translated regions (UTR) of mRNAs are the main mechanisms of post-transcriptional regulation. Analysis of posttranscriptional regulation is needed to clearly understand NK cell biology and, furthermore, harness the power of NK cells for therapeutic aims. This review summarizes the current understanding of mRNA metabolism during NK cell activation, focusing primarily on post-transcriptional regulation.

자연살해세포와 항암면역치료 (Natural Killer Cell and Cancer Immunotherapy)

  • 김헌식
    • 한양메디칼리뷰
    • /
    • 제33권1호
    • /
    • pp.59-64
    • /
    • 2013
  • Cancer remains the leading cause of death worldwide despite intense efforts in developing innovative treatments. Current approaches in cancer therapy are mainly directed to a selective targeting of cancer cells to avoid potential side effects associated with conventional therapy. In this respect, Natural killer (NK) cells have gained growing attention and are now being considered as promising therapeutic tools for cancer therapy owing to their intrinsic ability to rapidly recognize and kill cancer cells, while sparing normal healthy cells. NK cells play a key role in the first line of defense against transformed and virus-infected cells. NK cells sense their target through a whole array of receptors, both activating and inhibitory. Functional outcome of NK cell against target cells is determined by the balance of signals transmitted from diverse activating and inhibiting receptors. Despite significant progress made in the role of NK cells attack as a pivotal sentinel in tumor surveillance, the molecular has been that regulate NK cell responses remain unclear, which restricts the use of NK cells as a therapeutic measure. Accordingly, current efforts for NK cell-based cancer therapy have largely relied on the strategies that are based on the manipulation of inhibitory receptor function. However, if we better understand the mechanisms governing NK cell activation, including those mediated by diverse activating receptors, this knowledge can be applied to the development of optimal design for cancer immunotherapy by targeting NK cells.

Development of Natural Killer Cells from Hematopoietic Stem Cells

  • Yoon, Suk Ran;Chung, Jin Woong;Choi, Inpyo
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Natural killer (NK) cells play a crucial role in innate immune system and tumor surveillance. NK cells are derived from $CD34^+$hematopoietic stem cells and undergo differentiation via precursor NK cells in bone marrow (BM) through sequential acquisition of functional surface receptors. During differentiation of NK cells, many factors are involved including cytokines, membrane factors and transcription factors as well as microenvironment of BM. NK cells express their own repertoire of receptors including activating and inhibitory receptors that bind to major histocompatibility complex (MHC) class I or class I-related molecules. The balance between activating and inhibitory receptors determines the function of NK cells to kill targets. Binding of NK cell inhibitory receptors to their MHC class I-ligand renders the target cells to be protected from NK cell-mediated cytotoxicity. Thus, NK cells are able to discriminate self from non-self through MHC class I-binding inhibitory receptor. Using intrinsic properties of NK cells, NK cells are emerging to apply as therapeutic agents against many types of cancers. Recently, NK cell alloactivity has also been exploited in killer cell immunoglobulin-like receptor mismatched haploidentical stem cell transplantation to reduce the rate of relapse and graft versus host disease. In this review, we discuss the basic mechanisms of NK cell differentiation, diversity of NK cell receptors, and clinical applications of NK cells for anti-cancer immunotherapy.

The Natural Killer Cell Response to HCV Infection

  • Ahlenstiel, Golo
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.168-176
    • /
    • 2013
  • In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-${\gamma}$ responses. Furthermore, some data suggests certain chronically activated subsets that are $NKp46^{high}$ may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.

Immunostimulating Effect of a Well-known Thai Folkloric Remedy in Breast Cancer Patients

  • Thisoda, Piengpen;Ketsa-ard, Kanchana;Thongprasert, Sommai;Vongsakul, Molvibha;Picha, Pornthipa;Karbwang, Juntra;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2599-2605
    • /
    • 2013
  • The study aimed to evaluate immune-stimulating effects of a well-known Thai folkloric remedy when used for adjuvant therapy with conventional chemotherapeutics for treatment of breast cancer. Immunostimulating influence of the remedy (215 mg/kg body weight per day) on NK cell activity and TNF-${\alpha}$ release from the monocytes/macrophages were investigated in a total of 15 healthy women and 13 female patients with breast cancer (Group 1). The effect of breast tumor surgery on NK cell activity was further investigated in 18 female patients with breast cancer (Group 2). NK cell cytotoxic activity was determined by chromium release cytotoxic assay using K562, an erythroleukemic cell line. TNF-${\alpha}$ release from monocytes/macrophages separated from blood samples was determined through a biological assay using actinomycin D-treated L929 mouse fibroblast cells in the presence and absence of LPS. Baseline NK cell activity of the monocytes/macrophages separated from Group 2 patients expressed as %cytotoxicity was significantly lower than in the healthy subjects at E:T ratios of 100:1 and 25:1. In healthy subjects, there was no change in NK cell cytotoxic activity (%cytotoxicity or LU) following 1 and 2 weeks of treatment with the remedy compared with the baseline at various E:T ratios but the binding activity (%binding) was significantly increased after 2 weeks of treatment. The addition of one or two conventional chemotherapeutic regimens did not significantly reduce the NK cytotoxic activity but did affect release of TNF-${\alpha}$ in both unstimulated and LPS-stimulated samples. Surgery produced a significant suppressive effect on NK cell activity. The use of the remedy as an adjunct therapy may improve therapeutic efficacy and safety profiles of conventional chemotherapeutic regimens through stimulation of the immune system in cancer patients.

Advanced T and Natural Killer Cell Therapy for Glioblastoma

  • Wan-Soo Yoon;Dong-Sup Chung
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.356-381
    • /
    • 2023
  • Although immunotherapy has been broadly successful in the treatment of hematologic malignancies and a subset of solid tumors, its clinical outcomes for glioblastoma are still inadequate. The results could be due to neuroanatomical structures such as the blood-brain-barrier, antigenic heterogeneity, and the highly immunosuppressive microenvironment of glioblastomas. The antitumor efficacy of endogenously activated effector cells induced by peptide or dendritic cell vaccines in particular has been insufficient to control tumors. Effector cells, such as T cells and natural killer (NK) cells can be expanded rapidly ex vivo and transferred to patients. The identification of neoantigens derived from tumor-specific mutations is expanding the list of tumor-specific antigens for glioblastoma. Moreover, recent advances in gene-editing technologies enable the effector cells to not only have multiple biological functionalities, such as cytokine production, multiple antigen recognition, and increased cell trafficking, but also relieve the immunosuppressive nature of the glioblastoma microenvironment by blocking immune inhibitory molecules, which together improve their cytotoxicity, persistence, and safety. Allogeneic chimeric antigen receptor (CAR) T cells edited to reduce graft-versus-host disease and allorejection, or induced pluripotent stem cell-derived NK cells expressing CARs that use NK-specific signaling domain can be a good candidate for off-the-shelf products of glioblastoma immunotherapy. We here discuss current progress and future directions for T cell and NK cell therapy in glioblastoma.

5-Fluorouracil and Interleukin-2 Immunochemotherapy Enhances Immunogenicity of Non-Small Cell Lung Cancer A549 Cells through Upregulation of NKG2D Ligands

  • Zhao, Lei;Wang, Wen-Jia;Zhang, Jin-Nan;Zhang, Xing-Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권9호
    • /
    • pp.4039-4044
    • /
    • 2014
  • Background: The aim of this study was to investigate the anti-cancer effects and mechanisms of immunochemotherapy of 5-fluorouracil (5-FU) and interleukin-2 (IL-2) on non-small cell lung cancer (NSCLC) A549 cells. Materials and Methods: In order to detect whether 5-FU+IL-2 could effectively inhibit tumor growth in vivo, we established an A549-bearing nude mouse model. The cytotoxicity of natural killer (NK) cells was evaluated using a standard chromium release assay. To evaluate the relevance of NK cells in 5-FU+IL-2-mediated tumor inhibitory effects, we depleted NK cells in A549-bearing mice by injecting anti-asialo-GM-1 antibodies. Effects of 5-FU+IL-2 on the expression and promoter activity of NKG2D ligands (MICA/MICB) in A549 cells in vitro were also assessed. Results: In A549-bearing nude mice, combination therapy significantly inhibited tumor growth in comparison with monotherapy with 5-FU or IL-2 and enhanced the recognition and lysis of tumor cells by NK cells. Further study of mechanisms showed that NK cells played a vital role in the anticancer immune response of 5-FU+IL-2 immunochemotherapy. In addition, the combination therapy synergistically stimulated the expression and promoter activity of MICA/MICB. Conclusions: 5-FU and IL-2 immunochemotherapy significantly inhibited tumor growth and activated NK cytotoxicity in vivo, and these effects were partly impaired after depleting NK cells in tumor-bearing mice. Combination treatment of 5-FU and IL-2 upregulated the expression and the promoter activity of MICA/MICB in A549 cells, which enhanced the recognition of A549 cells by NK cells. All of the data indicated that immunochemotherapy of 5-FU and IL-2 may provide a new treatment option for patients with lung cancer.

Characterization of B- , T- , and NK-like Cells in Nile Tilapia (Oreochromis nilotica)

  • Choi, Sang-Hoon;Oh, Chan-Ho
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.341-345
    • /
    • 2000
  • It has been very difficult to develop and evaluate efficient fish vaccines because fish immune cells have not been properly characterized. In this study, we investigated the cell-mediated immunological properties of B- and T-like cells in Nile tilapia (Oreochromis nilotica). Surface immunoglobulin negative ($slg^{-}$) cell population proliferated in response to mammalian T-cell mitogens PHA and Con A, while surface immunoglobulin positive ($slg^{+}$) cells responded to the B-cell mitogen LPS. The slg$^{[-10]}$ cells from hemocyanin (HC)-immunized Tilapia, compared to the non-immunized control, reacted more to PHA than to Con A. Unexpectedly, antigen (Ag)-specific response was observed in both $slg^{-}$ and $slg^{-}$cells. Regardless of HC immunization, whole leukocytes from 8 head kidney of fish showed natural killer (NK)cell activity. Especially, NK cell activity was much higher in slg$^{[-10]}$ cells than in slg$^{+}$cells, indicating the possibility that fish NK cells were not at least associated with slg$^{+}$ cell population and not activated by Ag. Further understanding of functional fish immune cells will help to evaluate and develop effective vaccines for fishes and to monitor the course of therapy In infected fishes.hes.

  • PDF

Protein Expression Analysis in Hematopoietic Stem Cells during Osteopontin-Induced Differentiation of Natural Killer Cells

  • Kim, Mi-Sun;Bae, Kil-Soo;Kim, Hye-Jin;Yoon, Suk-Ran;Oh, Doo-Byung;Hwang, Kwang-Woo;Jun, Woo-Jin;Shim, Sang-In;Kim, Kwang-Dong;Jung, Yong-Woo;Park, So-Young;Kwon, Ki-Sun;Choi, In-Pyo;Chung, Jin-Woong
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.206-210
    • /
    • 2011
  • Natural Killer (NK) cells are the lymphocytes that are derived from hematopoietic stem cells, developed in the bone marrow from hematopoietic stem cells (HSC) by sequential acquisition of functional surface receptors, and express the repertoire of inhibitory and activating receptors. Recently, Osteopontin (OPN) has been identified as a critical factor for differentiation of natural killer cells. However, the detailed mechanism of OPN-induced NK differentiation has been still to be elucidated. Here, we determined the signaling pathway and possible receptor for OPN in NK differentiation. OPN induced expression of Bcl-2 and activation of Erk kinase. Inhibition of Erk pathway decreased the effect of OPN on NK differentiation. In addition, the expression of integrin ${\alpha}9$ was significantly increased by OPN during NK differentiation, suggesting the possible role of a major signaling molecule for OPN- induced NK differentiation.

말초 혈액 CD56+Natural Killer Cell 증가에 기인한 습관성 유산 환자에서 정맥 내 면역글로블린 치료의 효과에 관한 연구 (Effectiveness of Intravenous Immunoglobulin Therapy in Women with Recurrent Spontaneous Abortions and Elevated Pre-conceptional Peripheral Blood CD56+ Natural Killer Cell Percentage)

  • 차선화;박찬우;김해숙;조동희;김진영;강인수;궁미경;양광문
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제32권2호
    • /
    • pp.165-170
    • /
    • 2005
  • Objective: The aim of present study was to evaluate the effectiveness of low-dose intravenous immunoglobulin (IVIg) therapy in women with recurrent spontaneous abortions (RSA) and elevated pre-conceptional peripheral blood CD56+Natural Killer (NK) cell percentage. Study Design: Retrospective case control study. Materials and Methods: Thirty three women with RSA and elevated pre-conceptional peripheral blood CD56+NK cell percentage who had received low-dose IVIg therapy (400 mg/kg per day, every 4 week, until 20 gestational weeks) were included in this study. Controls were nine women with RSA and elevated pre-conceptional peripheral blood CD56+ Natural Killer (NK) cell percentage who had not received IVIg therapy were included in this study. Medical records of study and control groups were retrospectively analyzed and we compared the successful pregnancy outcomes between two groups. Successful pregnancy outcome was defined as pregnancy ongoing beyond 25 gestational weeks. Results: Age, number of previous abortions, pre-conceptional CD56+NK cell percentage and type of RSA were not statistically different between two groups. Otherwise, twenty-five women who received IVIg therapy (25/33, 75.8%) but, only three women who had not received (3/9, 33.3%) had a successful pregnancy outcome and the rate difference between two groups was statistically significant. Conclusion: Based on our study, low-dose IVIg therapy have a effective role in treatment of RSA patients with elevated pre-conceptional peripheral blood CD56+ Natural Killer (NK) cell percentage, but more larger scaled prospective study is needed for available of conclusive evidence.