Ourwork aims to assess the content of dry matter, protein, cell wall parameters and water soluble carbohydrates in forages without having to handle samples, transport them to a laboratory, dry, grind and chemically analyze them. for this purpose, the concept of fresh forage analysis under field conditions by means of compact integrated NIRS InGaAs-diode array instruments on small plot harvesters is being evaluated for plant breeding trials. This work was performed with the world first commercial experimental forage plot harvester equipped with a NIRS module for the collection, compression, and scanning of forage samples (including automatic referencing and dark current measure ments). It was used for harvesting and analyzing a number of typical forage grass and forage legume plot trials. After NIRS measurements in the field each sample was again analyzed in the laboratory by means of a conventional grating spectrometer equipped with Si-and PbS-detectors. Conventional laboratory analysis of the samples was restricted to dry matter (DM) content by means of oven drying at 105. Routine chemometric procedures were then employed to assess the comparative accuracy and precision of the DM assessments in the spectral range between 950 and 1650nm by the NIRS diode array as well as by the conventional NIRS scanning instrument. The results of this study confirmed that the type of NIRS diode array instrument employed here functioned well even in rugged field operations. further refinements proved to be necessary for optimizing the automatic filling of the sample compartment to adjust for the wide variation in forage material under conditions of extremely low or high harvest yields. The error achieved in calibrating the apparatus for forages of typical DM content proved to be satisfactory (SECV < 1.0). Possibly as a consequence of higher sampling errors, its performance in atypical forages with elevated DM contents was less satisfactory. The error level obtained on the conventional grating NIR spectrometer was similar to that of the diode array instrument for both types of forage.
The applicability of non-destructive near infrared reflectance spectroscopic (NIRS) method was tested to determine the protein and oil contents of intact soybean [Glycine max (L.) Merr.] seeds. A total of 198 soybean calibration samples and 101 validation samples were used for NIRS equation development and validation, respectively. In the developed non-destructive NIRS equation for analysis of protein and oil contents, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing, and 1 point second smoothing) and 2, 1, 20, 10 math treatment conditions with Standard Normal Variate and Detrend (SNVD) scatter correction method and entire spectrum (400-2500 nm) by using Modified Partial Least Squares (MPLS) regression, respectively. Validation of these non-destructive NIRS equations showed very low bias (protein: 0.060%, oil: -0.017%) and standard error of prediction (SEP, protein: 0.568 %, oil : 0.451 %) as well as high coefficient of determination ($R^2$, protein: 0.927, oil: 0.906). Therefore, these non-destructive NIRS equations can be applicable and reliable for determination of protein and oil content of intact soybean seeds, and non-destructive NIRS method could be used as a mass screening technique for selection of high protein and oil soybean in breeding programs.
This experiment was carried out to find suitable sample type for the more accurate prediction and non-destructive way in the application of near infrared reflectance spectroscopy (NIRS) technique for estimation the protein, total amino acids, and total isoflavone of soybean by comparing three different sample types, single seed, whole seeds, and milled seeds powder. The coefficient of determination in calibration ($R^2$) and coefficient of determination in cross-validation (1-VR) for three components analyzed using NIRS revealed that milled powder sample type yielded the highest, followed by single seed, and the whole seeds as the lowest. The coefficient of determination in calibration for single seed was moderately low($R^2$ 0.70-0.84), while the calibration equation developed with NIRS data scanned with whole seeds showed the lowest accuracy and reliability compared with other sample groups. The scatter plot for NIRS data versus the reference data of whole seeds showed the widest data cloud, in contrary with the milled powder type which showed flatter data cloud. By comparison of NIRS results for total isoflavone, total amino acids, and protein of soybean seeds with three sample types, the powder sample could be estimated for the most accurate prediction. However, based from the results, the use of single bean samples, without grinding the seeds and in consideration with NIRS application for more nondestructive and faster prediction, is proven to be a promising strategy for soybean component estimation using NIRS.
Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.
Hsu, Hua;Zuidhof, Martin J.;Recinos-Diaz, Guillermo;Wang, Zhiquan
한국근적외분광분석학회:학술대회논문집
/
한국근적외분광분석학회 2001년도 NIR-2001
/
pp.1510-1510
/
2001
NIRS uses reflectance signals resulting from bending and stretching vibrations in chemical bonds between carbon, nitrogen, hydrogen, sulfur and oxygen. These reflectance signals are used to measure the concentration of major chemical composition and other descriptors of homogenized and freeze-dried whole broiler carcasses. Six strains of chicken were analyzed and the NIRS model predictions compared to reference data. The results of this comparison indicate that NIRS is a rapid tool for predicting dry matter (DM), fat, crude protein (CP) and ash content in the broiler carcass. Males and females of six commercial strain crosses of broiler chicken (Gallus domesticus) were used in this study (6$\times$2 factorial design). Each strain was grown to 16 weeks of age, and duplicate serial samples were taken for body composition analysis. Each whole carcass was pressure-cooked, homogenized, and a representative sample was freeze-dried. Body composition determined as follows: DM by oven dried method at 105$^{\circ}C$ for 3 hours, fat by Mojonnier diethyl ether extraction, CP by measuring nitrogen content using an auto-analyzer with Kjeldhal digest and ash by combustion in a muffle furnace for 24 hour at 55$0^{\circ}C$. These homogenized and freeze-dried carcass samples were then scanned with a Foss NIR Systems 6500 visible-NIR spectrophotometer (400-2500nm) (Foss NIR Systems, Silver Spring, MD., US) using Infra-Soft-International, ISI, WinISl software (ISI, Port Matilda, US). The NIRS spectra were analyzed using principal component (PC) analysis. This data was corrected for scatter using standard normal “Variate” and “Detrend” technique. The accuracy of the NIRS calibration equations developed using Partial Least Squares (PLS) for predicting major chemical composition and carcass descriptors- such as body mass (BM), bird dry matter and moisture content was tested using cross validation. Discrimination analysis was also used for sex and strain identification. According to Dr John Shenk, the creator of the ISI software, the calibration equations with the correlation coefficient, $R^2$, between reference data and NIRS predicted results of above 0.90 is excellent and between 0.70 to 0.89 is a good quantifying guideline. The excellent calibration equations for DM ($R^2$= 0.99), fat (0.98) and CP (0.92) and a good quantifying guideline equation for ash (0.80) were developed in this study. The results of cross validation statistics for carcass descriptors, body composition using reference methods, inter-correlation between carcass descriptors and NIRS calibration, and the results of discrimination analysis for sex and strain identification will also be presented in the poster. The NIRS predicted daily gain and calculated daily gain from this experiment, and true daily gain (using data from another experiment with closely related broiler chicken from each of the six strains) will also be discussed in the paper.
본 연구에서는 10명의 건강한 성인을 대상으로 기능적 근적외선 분광법(fNIRS)을 이용하여 우세손과 비우세손에 따른 뇌 활성화도의 차이를 알아보고자 하였다. 우세손, 비우세손 총 2가지 조건에서 상자와 나무토막검사(BBT)를 실시하였다. 실험을 진행하는 동안 fNIRS을 이용하여 뇌 활성도를 측정하였으며, 실험이 종료된 후 nirsLAB v2019.04 소프트웨어를 사용하여 신호를 분석하였다. 그 결과 우세손을 사용한 경우 10명 중 6명이 우세손과 관련 있는 대뇌반구의 활성화를 보였고, 비우세손을 사용한 경우는 10명 중 3명만이 비우세손과 관련 있는 대뇌반구의 활성화를 보였다. 즉, 우세손, 비우세손 모두 우세손과 관련 있는 대뇌반구가 좀 더 활성화되었음을 확인하였다. 따라서 우세손을 알기 어려운 감각처리장애를 가진 아동들에게 fNIRS을 적용할 수 있는 기초적 자료로 사용될 수 있으리라 사료된다.
Near-infrared spectroscopy (NIRS), a noninvasive optical method, utilizes the characteristic absorption spectra of hemoglobin in the near-infrared range to provide information on cerebral hemodynamic changes in various clinical situations. NIRS monitoring have been used mainly to detect reduced perfusion of the brain during orthostatic stress for three common forms of orthostatic intolerance (OI); orthostatic hypotension, neurally mediated syncope, and postural orthostatic tachycardia syndrome. Autonomic function testing is an important diagnostic test to assess their autonomic nervous systems for patients with symptom of OI. However, these techniques cannot measure dynamic changes in cerebral blood flow. There are many experimentations about study of NIRS to reveal the pathophysiology of patients with OI. Research using NIRS in other neurologic diseases (stroke, epilepsy and migraine) are ongoing. NIRS have been experimentally used in all stages of stroke and may complement the established diagnostic and monitoring tools. NIRS also provide pathophysiological approach during rehabilitation and secondary prevention of stroke. The hemodynamic response to seizure has long been a topic for discussion in association with the neuronal damage resulting from convulsion. One critical issue when unpredictable events are to be detected is how continuous NIRS data are analyzed. Besides, NIRS studies targeting pathophysiological aspects of migraine may contribute to a deeper understanding of mechanisms relating to aura of migraine. NIRS monitoring may play an important role to trend regional hemodynamic distribution of flow in real time and also highlights the pathophysiology and management of not only patients with OI symptoms but also those with various neurologic diseases.
Background: Proper monitoring of cerebral perfusion during carotid artery surgery is crucial for determining if a shunt is needed. We compared the safety and reliability of near-infrared spectroscopy (NIRS) w ith transcranial Doppler (TCD) for cerebral monitoring. Methods: This single-center, retrospective review was conducted on patients who underwent carotid endarterectomy (CEA) using selective shunt-based TCD or NIRS at Daegu Catholic University Medical Center from November 2009 to June 2016. Postoperative complications were the primary outcome, and the distribution of risk factors between the 2 groups was compared. Results: The medical records of 74 patients (45 TCD, 29 NIRS) were reviewed. The demographic characteristics were similar between the 2 groups. One TCD patient died within the 30-day postoperative period. Postoperative stroke (n=4, p=0.15) and neurologic complications (n=10, p=0.005) were only reported in the TCD group. Shunt usage was 44.4% and 10.3% in the TCD and NIRS groups, respectively (p=0.002). Conclusion: NIRS-based selective shunting during CEA seems to be safe and reliable for monitoring cerebral perfusion in terms of postoperative stroke and neurologic symptoms. It also reduces unnecessary shunt usage.
Kim, Kwan-Su;Park, Si-Hyung;Choung, Myoung-Gun;Kim, Sun-Lim
한국작물학회지
/
제51권spc1호
/
pp.304-309
/
2006
Near infrared reflectance spectroscopy (NIRS) was used to develop a rapid and nondestructive method for the determination of fatty acid composition in sesame (Sesamum indicum L.) seed oil. A total of ninety-three samples of intact seeds were scanned in the reflectance mode of a scanning monochromator, and reference values for fatty acid composition were measured by gas-liquid chromatography. Calibration equations were developed using modified partial least square regression with internal cross validation (n=63). The equations obtained had low standard errors of cross-validation and moderate $R^2$ (coefficient of determination in calibration). Prediction of an external validation set (n=30) showed significant correlation between reference values and NIRS estimated values based on the SEP (standard error of prediction), $r^2$ (coefficient of determination in prediction) and the ratio of standard deviation (SD) of reference data to SEP. The models developed in this study had relatively higher values (more than 2.0) of SD/SEP(C) for oleic and linoleic acid, having good correlation between reference and NIRS estimate. The results indicated that NIRS, a nondestructive screening method could be used to rapidly determine fatty acid composition in sesame seeds in the breeding programs for high quality sesame oil.
Kim, Hak Yeong;Seo, Kain;Jeon, Hong Jin;Lee, Unjoo;Lee, Hyosang
Molecules and Cells
/
제40권8호
/
pp.523-532
/
2017
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.