• Title/Summary/Keyword: NIR reflectance spectroscopy

Search Result 138, Processing Time 0.028 seconds

DETERMINATION OF MOISTURE AND NITROGEN ON UNDRIED FORAGES BY NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS)

  • Cozzolino, D.;Labandera, M.;Inia La Estanzuela
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1620-1620
    • /
    • 2001
  • Forages, both grazed and conserved, provide the basis of ruminant production systems throughout the world. More than 90 per cent of the feed energy consumed by herbivorous animals world - wide were provided by forages. With such world - wide dependence on forages, the economic and nutritional necessity of been able to characterize them in a meaningful way is vital. The characterization of forages for productive animals is becoming important for several reasons. Relative to conventional laboratory procedures, Near Infrared Reflectance Spectroscopy (NIRS) offers advantages of simplicity, speed, reduced chemical waste, and more cost-effective prediction of product functionality. NIR spectroscopy represents a radical departure from conventional analytical methods, in that entire sample of forage is characterized in terms of its absorption properties in the near infrared region, rather than separate subsamples being treated with various chemicals to isolate specific components. This forces the analyst to abandon his/her traditional narrow focus on the sample (one analyte at a time) and to take a broader view of the relationship between components within the sample and between the sample and the population from which it comes. forage is usually analysed by NIRS in dry and ground presentation. Initial success of NIRS analysis of coarse forages suggest a need to better understand the potential for analysis of minimally processed samples. Preparation costs and possible compositional alterations could be reduced by samples presented to the instrument in undried and unground conditions. NIRS has gained widespread acceptance for the analysis of forage quality constituents on dry material, however little attention has been given to the use of NIRS for chemical determinations on undried and unground forages. Relatively few works reported the use of NIRS to determine quality parameters on undried materials, most of them on both grass and corn silage. Only two works have been found on the determination of quality parameters on fresh forages. The objectives of this paper were (1) to evaluate the use of NIRS for determination of nitrogen and moisture on undried and unground forage samples and (2) to explore two mathematical treatments and two NIR regions to predict chemical parameters on fresh forage. Four hundred forage samples (n: 400) were analysed in a NIRS 6500 instrument (NIR Systems, PA, USA) in reflectance mode. Two mathematical treatments were applied: 1,4,4,1 and 2,5,5,2. Predictive equations were developed using modified partial least squares (MPLS) with internal cross - validation. Coefficient of determination in calibration (${R^2}_{CAL}$) and standard error in cross-validation (SECV) for moisture were 0.92 (12.4) and 0.92 (12.4) for 1,4,4,1 and 2,5,5,2 respectively, on g $kg^{-1}$ dry weight. For crude protein NIRS calibration statistics yield a (${R^2}_{CAL}$) and (SECV) of 0.85 (19.8) and 0.85 (19.6) for 1,4,4,1 and 2,5,5,2 respectively, on a dry weight. It was concluded that NIRS is a suitable method to predict moisture and nitrogen on fresh forage without samples preparation.

  • PDF

OBSERVATION OF SPECTRAL CHARACTERISTICS FOR SOIL CONTAMINANTS

  • Choe Eun-Young;Kim Kyoung-Woong;Lee Sung-Soon;Chi Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.422-425
    • /
    • 2005
  • Spectral characteristics depending on soil constituents and their proportion in a soil were firstly studied for monitoring of soil contamination using hyperspectral remote sensing. The reflectance spectra of heavy metals in soils were investigated in the VIS-NIR-SWIR regions (400-2500 nm) to observe spectral variation as a function of constituents and concentrations. Commercial kaolinite soils mixed with lead, copper, arsenic, and cadmium were used as synthetic soil samples for spectral measurement. In case of copper, relatively spectrally active regions was observed with some band shift whereas other heavy metals had only simple spectral variations expected to be related to the sorption phase and the amount of metal onto kaolinite. The reflectance spectrum of each metal on kaolinite could be identified in VIS-NIR region.

  • PDF

SOURCES OF NON-LINEARITY IN NIR SPECTRA OF SCATTERING SAMPLES

  • Dahm, Donald J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1011-1011
    • /
    • 2001
  • In general, NIR reflectance spectra (whether recorded using log(1/R) or the Kubelka-Munk function) are not linear functions of the concentration of the absorbers which we are measuring. There are several causes for this non-linearity, the most commonly cited one being front surface reflection. However, non-linearity also arises from the effects of particle size, sample thickness, void fraction, and experimental arrangement. In this talk, we will attempt to isolate the effects of the various causes, and show the effects of each, using both theoretical calculations and actual data. The listener should then be able to assess where we stand in our quest to produce “linear” data through pre-processing and/or alternate collection schemes.

  • PDF

Quantification of intact ambroxol tablet using near-infrared spectroscopy

  • Kim, Do-Hyung;Lim, Hun-Rang;Woo, Young-Ah;Kim, Hyo-Jin;Kang, Shin-Jung;Choi, Hyun-Chul;Choi, Han-Gon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.279.1-279.1
    • /
    • 2003
  • NIR reflectance spectroscopy, using a fiber-optic probe was used to determine rapidly and non-destructively the content of ambroxol in intact ambroxol 30 mg (nominal content 12.5% m/m ambroxol) tablets by collecting NIR spectra in range 1100 - 1750 nm and using PLSR calibration method. The tablets (10.3 - 15.9% m/m ambroxol, i.e., 82 - 127% of the nominal label content) were used 7 calibration set and 5 validation set. (omitted)

  • PDF

NIRS Analysis of Liquid and Dry Ewe Milk

  • Nunez-Sanchez, Nieves;Varo, Garrido;Serradilla-Manrique, Juan M.;Ares-Cea, Jose L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1251-1251
    • /
    • 2001
  • The routine analysis of milk chemical components is of major importance both for the management of animals in dairy farms and for quality control in dairy industries. NIRS technology is an analytical technique which greatly simplifies this routine. One of the most critical aspects in NIRS analysis of milk is sample preparation and analysis modes which should be fast and straightforward. An important difficulty when obtaining NIR spectra of milk is the high water content (80 to 90%) of this product, since water absorbs most of the infrared radiation, and, therefore, limits the accuracy of calibrating for other constituents. To avoid this problem, the DESIR system was set up. Other ways of radiation-sample interaction adapted for liquids or semi-liquids exist, which are practically instantaneous and with limited or null necessity of sample preparation: Transmission and Folded Transmission or Transflectance. The objective of the present work is to compare the precision and accuracy of milk calibration equations in two analysis modes: Reflectance (dry milk) and Folded Transmission (liquid milk). A FOSS-NIR Systems 6500 I spectrophotometer (400-2500 nm) provided with a spinning module was used. Two NIR spectroscopic methods for milk analysis were compared: a) folded transmission: liquid milk samples in a 0.1 pathlength sample cell (ref. IH-0345) and b) reflectance: dried milk samples in glass fibre filters placed in a standard ring cell. A set of 101 milk samples was used to develop the calibration equations, for the two NIR analysis modes, to predict casein, protein, fat and dry matter contents, and 48 milk samples to predict Somatic Cell Count (SCC). The calibrations obtained for protein, fat and dry matter have an excellent quantitative prediction power, since they present $r^2$ values higher than 0.9. The $r^2$ values are slightly lower for casein and SCC (0.88 and 0.89 respectively), but they still are sufficiently high. The accuracy of casein, protein and SCC equations is not affected by the analysis modes, since their ETVC values are very similar in reflectance and folded transmission (0.19% vs 0.21%; 0.16% vs 0.19% and 55.57% vs 53.11% respectively), Lower SECV values were obtained for the prediction of fat and dry matter with the folded transmission equations (0.14% and 0.25% respectively) compared to the results with the reflectance ones (0.43% and 0.34% respectively). In terms of accuracy and speed of analytical response, NIRS analysis of liquid milk is recommended (folded transmission), since the drying procedure takes 24 hours. However, both analysis modes offer satisfactory results.

  • PDF

Development of robust Calibration for Determination Apple Sweetness using Near Infrared Spectroscopy

  • Sohn, Mi-Ryeong;Kwon, Young-Kil;Cho, Rae-Kwang
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1614-1614
    • /
    • 2001
  • The sweetness (。Bix) of fruit is the main quality factor contributing to the fruit taste. The brix of the apple fruit can be measured non-destructively by near infrared (NIR) spectroscopy, allowing the sweetness grading of individual apple fruit. However, the fruit quality is influenced by various factors such as growing location, producing year, variety and harvest time etc., accordingly the robust NIR calibration is required. In this experimental results are presented the influence of two variations such as growing location and producing year of apple fruit in establishing of calibrations for sweetness, and developed a stable and highly accurate calibration. Apple fruit (Fuji) was collected every year from 1995 to 1997 in 3 different growing locations (Andong, Youngchun and Chungsong) of Kyungpook in Korea. NIR reflectance spectra of apple fruit were scanned in wavelength range of 1100∼2500nm using an InfraAlyzer 500C (Bran+Luebbe) with halogen lamp and PbS detector. The multiple linear regression and stepwise was carried out between the NIR raw spectra and the brix measured by refractometer to select the best regression equations. The calibration models by each growing district were well predicted to dependent sample set, but poorly predicted to independent sample set. Combined calibration model using data of three growing districts predicted reasonable well to a population set drawn from all growing districts(SEP = 0.69%, Bias=-0.075). The calibration models by each harvest year were not transferable across harvest year, however a combined calibration model using data of three harvest years was sufficiently robust to predict each sample sets(SEP = 0.53%, Bias = 0.004).

  • PDF

Non-destructive and Rapid Prediction of Moisture Content in Red Pepper (Capsicum annuum L.) Powder Using Near-infrared Spectroscopy and a Partial Least Squares Regression Model

  • Lim, Jongguk;Mo, Changyeun;Kim, Giyoung;Kang, Sukwon;Lee, Kangjin;Kim, Moon S.;Moon, Jihea
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.184-193
    • /
    • 2014
  • Purpose: The aim of this study was to develop a technique for the non-destructive and rapid prediction of the moisture content in red pepper powder using near-infrared (NIR) spectroscopy and a partial least squares regression (PLSR) model. Methods: Three red pepper powder products were separated into three groups based on their particle sizes using a standard sieve. Each product was prepared, and the expected moisture content range was divided into six or seven levels from 3 to 21% wb with 3% wb intervals. The NIR reflectance spectra acquired in the wavelength range from 1,100 to 2,300 nm were used for the development of prediction models of the moisture content in red pepper powder. Results: The values of $R{_V}{^2}$, SEP, and RPD for the best PLSR model to predict the moisture content in red pepper powders of varying particle sizes below 1.4 mm were 0.990, ${\pm}0.487%$ wb, and 10.00, respectively. Conclusions: These results demonstrated that NIR spectroscopy and a PLSR model could be useful techniques for measuring rapidly and non-destructively the moisture content in red pepper powder.

Nondestructive Evaluation for the Viability of Watermelon (Citrullus lanatus) Seeds Using Fourier Transform Near Infrared Spectroscopy

  • Lohumi, Santosh;Mo, Changyeun;Kang, Jum-Soon;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.312-317
    • /
    • 2013
  • Purpose: Conventional methods used to evaluate seeds viability are destructive, time consuming, and require the use of chemicals, which are not feasible to implement to process plant in seed industry. In this study, the effectiveness of Fourier transform near infrared (FT-NIR) spectroscopy to differentiate between viable and nonviable watermelon seeds was investigated. Methods: FT-NIR reflectance spectra of both viable and non-viable (aging) seeds were collected in the range of 4,000 - 10,000 $cm^{-1}$ (1,000 - 2,500 nm). To differentiate between viable and non-viable seeds, a multivariate classification model was developed with partial least square discrimination analysis (PLS-DA). Results: The calibration and validation set derived from the PLS-DA model classified viable and non-viable seeds with 100% accuracy. The beta coefficient of PLS-DA, which represented spectral difference between viable and non-viable seeds, showed that change in the chemical component of the seed membrane (such as lipids and proteins) might be responsible for the germination ability of the seeds. Conclusions: The results demonstrate the possibility of using FT-NIR spectroscopy to separate seeds based on viability, which could be used in the development of an online sorting technique.

Quantification of Tocopherol and Tocotrienol Content in Rice Bran by Near Infrated Reflectance Spectroscopy (근적외선분광분석기를 이용한 미강의 Tocopherol과 Tocotrienol 함량 분석)

  • 김용호;강창성;이영상
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.211-215
    • /
    • 2004
  • Near infrared reflectance spectroscopy (NIRS) is a rapid and accurate analytical method for determining the composition of agricultural products and feeds. This study was conducted to determine tocopherol and tocotrienol contents in rice bran by using NIRS system. Total 80 rice bran samples previously analyzed by HPLC were scanned by NIRS and over 60 samples were selected for calibration and validation equation. A calibration equation calculated by MPLS(modified partial least squares) regression technique was developed and coefficient of determination for tocopheyol and tocotyienol content were 0.975 and 0.984, respectively, in calibration sets. Each calibration equation was fitted to validation set that was performed with the remaining samples not included is the calibration set, which showed high positive correlation both in tocopherol and tocotrienol content file. This results demonstrate that the developed NIRS equation can be practically used as a rapid screening method for quantification of tocopherol and tocotrienol contents in rice bran.

Discrimination of Korean Domestic and Foreign Soybeans using Near Infrared Reflectance Spectroscopy (근적외선분광광도계(NIRS)를 이용한 국내산 콩과 수입콩의 판별분석)

  • Ahn, Hyung-Gyun;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.296-300
    • /
    • 2012
  • Discrimination of geographic origin of agricultural products is a important issue in Korea because the price difference between Korean domestic and imported cereals is a key among some reasons. NIRS (Near Infrared Reflectance Spectroscopy) has been applied to classify the geographical origin of soybeans. Total 135 samples (Korean domestic 92 and foreign 43) were used to obtain calibration equation through 400~2,500 nm wavelength. The math treatment with 1st derivative and 4 nm gap and the modified partial least squares(MPLS)regression was outstanding for calibration equation. The standard error of calibration and determination coefficient in calibration set(n=115) was 6.65 and 0.98, respectively. And it showed that the extra 20 samples for validation equation were identified their authentication correctly. This study describes that the application of NIRS would be possible for discrimination of geographical origin between Korean domestic and imported soybeans.