• 제목/요약/키워드: NIR (near-infrared) spectra

검색결과 226건 처리시간 0.026초

Aspirin 결정화 과정 중 특성변화의 NIR 인라인 모니터링 연구 (Study of NIR in-line Monitoring of Physicochemical Changes during the Crystallization Process of Aspirin)

  • 이혜은;왕인천;이민정;서다영;신상문;최용선;최광진
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.757-762
    • /
    • 2010
  • 제약산업에서 최종의약품의 품질과 성능은 결정분말의 크기, 모양 및 다형체 등에 의해서 크게 달라지므로, 원료의약품(API)의 결정화 공정은 매우 중요한 제약공정이다. 본 연구에서는 NIR 분광기와 광섬유 탐침을 이용하여, API 결정화 공정을 인라인 모니터링하여, 결정화 진행과정에서 핵성성, 결정성장, 다형체 등의 주요 특성을 실시간으로 감시하고 예측할 수 있는지를 탐구하였다. NIR 스펙트럼 분석에는 주요인분석법(PCA)을 적용하였고, 잘 알려진 aspirin를 대상 API로 하여 에탄올과 아세톤의 용매 혼합비율에 따른 결정특성 변화를 관찰하였다. 여러 특성분석 결과, 생성되는 aspirin 결정체의 다형은 용매 혼합비에는 무관하게 상온에서 가장 안정상인 form-I이었지만, 핵생성 개시점, 결정입도 및 결정의 형상은 용매의 혼합비에 따라 크게 달라진다는 것을 확인하였다. 이러한 결과는 NIR 스펙트럼의 PCA 해석결과와 매우 긴밀한 상관성을 보여주었다. 결론적으로, NIR 인라인 모니터링을 통해서, 약물의 결정화 과정에서 관심사가 되는 주요 결정특성을 실시간으로 관찰하고 예측할 수 있음이 실증되었다.

ASSESSING CALIBRATION ROBUSTNESS FOR INTACT FRUIT

  • Guthrie, John A.;Walsh, Kerry B.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1154-1154
    • /
    • 2001
  • Near infra-red (NIR) spectroscopy has been used for the non-invasive assessment of intact fruit for eating quality attributes such as total soluble solids (TSS) content. However, little information is available in the literature with respect to the robustness of such calibration models validated against independent populations (however, see Peiris et al. 1998 and Guthrie et al. 1998). Many studies report ‘prediction’ statistics in which the calibration and prediction sets are subsets of the same population (e. g. a three year calibration validated against a set from the same population, Peiris et al. 1998; calibration and validation subsets of the same initial population, Guthrie and Walsh 1997 and McGlone and Kawano 1998). In this study, a calibration was developed across 84 melon fruit (R$^2$= 0.86$^{\circ}$Brix, SECV = 0.38$^{\circ}$Brix), which predicted well on fruit excluded from the calibration set but taken from the same population (n = 24, SEP = 0.38$^{\circ}$Brix with 0.1$^{\circ}$Brix bias), relative to an independent group (same variety and farm but different harvest date) (n = 24, SEP= 0.66$^{\circ}$ Brix with 0.1$^{\circ}$Brix bias). Prediction on a different variety, different growing district and time was worse (n = 24, SEP = 1.2$^{\circ}$Brix with 0.9$^{\circ}$Brix bias). Using an ‘in-line’ unit based on a silicon diode array spectrometer, as described in Walsh et al. (2000), we collected spectra from fruit populations covering different varieties, growing districts and time. The calibration procedure was optimized in terms of spectral window, derivative function and scatter correction. Performance of a calibration across new populations of fruit (different varieties, growing districts and harvest date) is reported. Various calibration sample selection techniques (primarily based on Mahalanobis distances), were trialled to structure the calibration population to improve robustness of prediction on independent sets. Optimization of calibration population structure (using the ISI protocols of neighbourhood and global distances) resulted in the elimination of over 50% of the initial data set. The use of the ISI Local Calibration routine was also investigated.

  • PDF

근적외선 분광법을 이용한 산지방목지 목초시료 화학적 성분 분석에 관한 연구 (Studies on Predicting Chemical Composition of Permanent Pastures in Hilly Grazing Area Using Near-Infrared Spectroscopy)

  • 박형수;이효진;이효원;고한종;정종성
    • 한국초지조사료학회지
    • /
    • 제37권2호
    • /
    • pp.154-160
    • /
    • 2017
  • 본 연구는 산지방목초지에서 채취한 목초 및 야초 혼합시료의 화학조성분석의 근적외선분광법 이용의 가능성을 탐색하기 위하여 실시하였다. 충남 서산의 한우개량사업소의 방목초지에서 2년간 386점의 목야초 혼합시료를 수집하였다. 재료를 이용하여 파장을 수집한 후 파장이 동일한 시료를 제외한 163점에 대해 습식분석을 하였다. 최적의 검량식 유도를 위하여 파장은 가시광선 및 근적외선 전대역을 사용한 것 그리고 가시광선대역을 사용하면서 동시에 T값을 2.5 및 1.5를 적용하여 최상의 검량식을 구하였다. 전체적으로 볼 때 근적외선 대역의 파장을 사용한 것이 검량식 결정계수값이 높았고 또한 검증식 역시 같은 경향이었다. T값은 습식분석치와 NIRS 예측치의 차가 더 적은 1.5를 적응하였을 때 검량 및 검증값이 더 높은 것으로 나타났다. 검량식의 $R^2$치는 0.48~0.93 사이 그리고 검증식은 0.35~0.88 사이였다. 조단백질, 조섬유, NDF에서 보다 만족스런 예측이 가능하였다.

FT NIR 분광법 및 이진분류 머신러닝 방법을 이용한 소나무 종자 발아 예측 (Prediction of Germination of Korean Red Pine (Pinus densiflora) Seed using FT NIR Spectroscopy and Binary Classification Machine Learning Methods)

  • 김용율;구자정;구다은;한심희;강규석
    • 한국산림과학회지
    • /
    • 제112권2호
    • /
    • pp.145-156
    • /
    • 2023
  • 본 연구에서는 -18℃ 및 4℃에서 18년간 저장된 소나무 종자 963개에 대해 FT NIR 스펙트럼을 조사하여 7개 머신러닝 방법(XGBoost, Boosted Tree, Bootstrap Forest, Neural Networks, Decision Tree, Support Vector Machine, PLS-DA)을 이용한 종자발아 예측모델을 만들고, 그 성능을 비교하였다. XGBoost 및 Boosted Tree 모델의 예측성능이 가장 우수하였으며, 정확도, 오분류율 및 AUC 값은 각각 0.9722, 0.0278, 0.9735과 0.9653, 0.0347, 0.9647이었다. 2개 모델에서 종자발아 유무를 예측하는 데 있어 상대적 중요도가 높았던 54개 파수 변수들에 대한 파장대는 크게 6개(811~1,088 nm, 1,137~1,273 nm, 1,336~1,453 nm, 1,666~1,671 nm, 1,879~2,045 nm, 2,058~2,409 nm) 그룹으로 나눌 수 있었으며, 방향족 아미노산, 셀룰로스, 리그닌, 전분, 지방산 및 수분과 관련된 것으로 추정되었다. 이상의 결과를 종합할 때, 본 연구에서 얻어진 FT NIR 스펙트럼 데이터과 2개의 머신러닝 모델은 소나무 저장종자의 발아 유무를 정확도 96% 이상으로 예측할 수 있기에 장기저장 종자 유전자원의 비파괴적 활력검정에 유용하게 활용될 수 있을 것으로 생각된다.

Prediction of Chemical Organic Composition of Manure by Near Infrared Reflectance Spectroscopy

  • Amari, Masahiro;Fukumoto, Yasuyuki;Takada, Ryozo
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1265-1265
    • /
    • 2001
  • The organic materials included in excreta of livestock are important resources for organic manure and for improving soil quality, although there is still far from effective using. One reason for this is still unclearly standard of quality for evaluation of manure made from excreta of livestock. Therefore, the objective of this study is to develop rapid and accurate analytical method for analyzing organic compositions of manure made from excreta of livestock, and to establish quality evaluation method based on the compositions predicted by near infrared reflectance spectroscopy (NIRS). Sixteen samples of manure, each eight samples prepared from two treatments, were used in this study. The manure samples were prepared by mixing 560 kg feces of swine,60 kg sawdust with moisture content was adjusted to be 65%. The mixture was then keep under two kinds of shelter, black and clear sheets, as a treatment on the effect of sunlight. Samples were taken in every week (form week-0 to 7) during the process of manure making. Samples were analyzed to determine neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) by detergent methods, and organic cell wall (OCW) and fibrous content of low digestibility in OCW (Ob) by enzymatic methods. Biological oxygen demand (BOD) was analyzed by coulometric respirometer method. These compositions were carbohydrateds and lignin that were hardly digested. Spectra of samples were scanned by NIR instrument model 6500 (Pacific Scientific) and read over the range of wavelength between 400 and 2500nm. Calibration equations were developed using eight manure samples collected from black sheet shelter, while prediction was conducted to the other eight samples from clear sheet shelter. Accuracy of NTRS prediction was evaluated by correlation coefficients (r), standard error of prediction (SEP) and ration of standard deviation of reference data in prediction sample set to SEP (RPD). The r, SEP and RPD value of forage were 0.99, 0.69 and 7.6 for ADL, 0.96, 1.03 and 4.1 for NDF, 0.98, 0.60 and 4.9 for ADF, 0.92, 1.24 and 2.6 for Ob, and 0.91, 1.02 and 7.3 for BOD, respectively. The results indicated that NIRS could be used to measure the organic composition of forage used in manure samples.

  • PDF

근적외 분석법을 응용한 사과의 생잎과 건조잎의 질소분석 (Determination of Nitrogen in Fresh and Dry Leaf of Apple by Near Infrared Technology)

  • 장광재;서상현;강연복;한효일;박우철
    • 한국토양비료학회지
    • /
    • 제37권4호
    • /
    • pp.259-265
    • /
    • 2004
  • 사과의 영양진단에서 사과잎 분석을 신속히 하기 위한 방법을 모색하기 위해 생잎과 건조잎을 이용해 근적의 스펙트럼을 측정하고 이를 질소 함량과의 최적의 상관관계를 도출하기 위해 부분소자승(PLS)과 주성분회귀(PCR)과 같은 다변량 분석법을 이용하여 비파괴 검량식을 작성하였다. 또한 검량식 작성에서 비파괴 측정 정확도를 향상시키기 위하여 smoothing, mean normalization, multiplicative scatter correction (MSC). derivative 등의 다양한 데이터 전처리 조작을 수행하여 정확도 향상 가능성을 조사하였다. 사과 건조잎의 비파괴 측정 가능성을 조사한 결과 PLS-1 모델에서 Norris first derivate하였을 태 RMSEP가 $0.6999g\;kg^{-1}$ 로 가장 좋았으며, 생잎은 Savitzky-Golay first derivate하였을 때에 RMSEP 가 $1.202g\;kg^{-1}$으로 가장 좋았다. 건조잎의 PCR 모델은 mean normalization 처리 후 Savitzky-Golay first derivative하였을 때가 RMSEP 가 $0.553g\;kg^{-1}$, 이었으며 생잎에서도 RMSEP는 $1.047g\;kg^{-1}$로 나타났다. 이와 같은 견과로서 사과의 생잎과 건조잎의 분석이 근적외분석기술에 의해 가능할 것으로 판단된다.

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

NIRS APPLIED TO "PASTA FILATA" CHEESE ANALYSIS

  • Cattaneo, Tiziana M.P.;Maraboli, Adele;Giangiacomo, Roberto
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1519-1519
    • /
    • 2001
  • The aim of this work was to test the feasibility of NIRS in analysing textural characteristics of “Pasta Filata” cheese during the shelf-life. For this purpose, 128 samples of “Pasta Filata” cheese, subdivided into two sets on the basis of the wax used to avoid mechanical damages (paraffin, biodegradable wax), were analysed by using an InfraAlyzer 500 (Bran+Luebbe). Analyses were performed at room temperature. Samples were cut into small cylinders (D=3.2 cm, height = 1 cm), in agreement with literature information. Data were processed by using Sesame Software (Bran+Luebbe). Samples were analysed, during the shelf-life, at 90 and 120 days. In parallel, textural characteristics were detected carrying out a compression method by using an Universal Testing Machine Instron model 4301 (Instron Corporation, Canton, Massachusetts). As compression probe was used a cylinder (D = 5.8 cm, height = 3.7 cm) and a speed rate of 20mm/min was applied. The load at 20 mm of compression was recorded on sample cylinders of 1.7 cm (D) by 2 cm (height). Qualitative analysis of full spectra showed the possibility to gather samples on the basis of the days of shelf-life. The textural characteristics of cheese during the shelf-life was evaluated by comparing NIRS data with rheological results. The best correlation was obtained applying MLR to the first derivative of normalized absorbance values at seven wavelengths. Load values were plotted against the NIR prediction values based on first derivatives. NIRS proved to be an useful tool in classifying samples on the basis of the shelf-life period as well as in predicting their textural characteristics ($R^2$= 0.916, SEC = 0.192, SEP = 0.248, SEV = 0.345).

  • PDF

Applications of Discrete Wavelet Analysis for Predicting Internal Quality of Cherry Tomatoes using VIS/NIR Spectroscopy

  • Kim, Ghiseok;Kim, Dae-Yong;Kim, Geon Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.48-54
    • /
    • 2013
  • Purpose: This study evaluated the feasibility of using a discrete wavelet transform (DWT) method as a preprocessing tool for visible/near-infrared spectroscopy (VIS/NIRS) with a spectroscopic transmittance dataset for predicting the internal quality of cherry tomatoes. Methods: VIS/NIRS was used to acquire transmittance spectrum data, to which a DWT was applied to generate new variables in the wavelet domain, which replaced the original spectral signal for subsequent partial least squares (PLS) regression analysis and prediction modeling. The DWT concept and its importance are described with emphasis on the properties that make the DWT a suitable transform for analyzing spectroscopic data. Results: The $R^2$ values and root mean squared errors (RMSEs) of calibration and prediction models for the firmness, sugar content, and titratable acidity of cherry tomatoes obtained by applying the DWT to a PLS regression with a set of spectra showed more enhanced results than those of each model obtained from raw data and mean normalization preprocessing through PLS regression. Conclusions: The developed DWT-incorporated PLS models using the db5 wavelet base and selected approximation coefficients indicate their feasibility as good preprocessing tools by improving the prediction of firmness and titratable acidity for cherry tomatoes with respect to $R^2$ values and RMSEs.

SAVITZKY-GOLAY DERIVATIVES : A SYSTEMATIC APPROACH TO REMOVING VARIABILITY BEFORE APPLYING CHEMOMETRICS

  • Hopkins, David W.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1041-1041
    • /
    • 2001
  • Removal of variability in spectra data before the application of chemometric modeling will generally result in simpler (and presumably more robust) models. Particularly for sparsely sampled data, such as typically encountered in diode array instruments, the use of Savitzky-Golay (S-G) derivatives offers an effective method to remove effects of shifting baselines and sloping or curving apparent baselines often observed with scattering samples. The application of these convolution functions is equivalent to fitting a selected polynomial to a number of points in the spectrum, usually 5 to 25 points. The value of the polynomial evaluated at its mid-point, or its derivative, is taken as the (smoothed) spectrum or its derivative at the mid-point of the wavelength window. The process is continued for successive windows along the spectrum. The original paper, published in 1964 [1] presented these convolution functions as integers to be used as multipliers for the spectral values at equal intervals in the window, with a normalization integer to divide the sum of the products, to determine the result for each point. Steinier et al. [2] published corrections to errors in the original presentation [1], and a vector formulation for obtaining the coefficients. The actual selection of the degree of polynomial and number of points in the window determines whether closely situated bands and shoulders are resolved in the derivatives. Furthermore, the actual noise reduction in the derivatives may be estimated from the square root of the sums of the coefficients, divided by the NORM value. A simple technique to evaluate the actual convolution factors employed in the calculation by the software will be presented. It has been found that some software packages do not properly account for the sampling interval of the spectral data (Equation Ⅶ in [1]). While this is not a problem in the construction and implementation of chemometric models, it may be noticed in comparing models at differing spectral resolutions. Also, the effects on parameters of PLS models of choosing various polynomials and numbers of points in the window will be presented.

  • PDF