Kim, Ki-Woong;Kim, DaeSeong;Won, Yong Lim;Kang, Seong-Kyu
Toxicological Research
/
제29권2호
/
pp.115-120
/
2013
To investigate the effects of short-term exposure of beryllium on the human immune system, the proportion of T-lymphocytes such as CD3+, CD4+, CD8+, CD95, and NK cells, and the proportion of B cells and $TNF{\alpha}$ level in peripheral blood and immunoglobulins in the serum of 43 exposed workers and 34 healthy control subjects were studied. External exposure to beryllium was measured by atomic absorption spectrometer as recommended by the NIOSH analytical method 7300. T lymphocyte subpopulation analysis was carried out with flow cytometer. The working duration of exposed workers was less than 3 months and the mean ambient beryllium level was $3.4{\mu}g/m^3$, $112.3{\mu}g/m^3$, and $2.3{\mu}g/m^3$ in molding (furnace), deforming (grinding), and sorting processes, respectively (cited from Kim et al., 2008). However, ambient beryllium level after process change was non-detectable (< $0.1{\mu}g/m^3$). The number of T lymphocytes and the amount of immunoglobulins in the beryllium-exposed workers and control subjects were not significantly different, except for the total number of lymphocytes and CD95 (APO1/FAS). The total number of lymphocytes was higher in the beryllium-exposed individuals than in the healthy control subjects. Multiple logistic regression analysis showed lymphocytes to be affected by beryllium exposure (odd ratio = 7.293; p<0.001). These results show that short-term exposure to beryllium does not induce immune dysfunction but is probably associated with lymphocytes proliferation.
To confirm and quantify asbestos fibers released from the asbestos-cement slate roofs due to weathering, three houses, selected based on the year of built - 60's, 70, and 80's, were investigated. All of them were located in the downtown of Seoul. Rain or snow-melt water was collected from the roof in a 3.5 liter plastic bottle. A known amount of collected water was filtered on the 37 mm membrane filter, ashed in a muffle furnace, and subsequently treated with HCl to remove organic material. The treated remaining was refiltered on a 25mm membrane filter for PLM and PCM analyses. The NIOSH 7400 method was utilized for PCM counting. In addition, SEM/EDX was used to confirm the asbestos types. The results of this study showed that chrysotile fibers were confirmed by PLM in all samples analyzed. A significant amount of asbestos fibers were found in the water samples. The ranges of asbestos fibers counted from the samples collected in the 60's, 70's, and 80's were; 10,406.3~55,575.6 f/L, 5,218.8~38,126.2 f/L, and 2,906.3~7,798.6 f/L, respectively. As anticipated, concentrations of asbestos fibers increased with time of installment of the roofing material. We conclude that weathering can be a significant factor on the release of asbestos fibers from the asbestos cement products. Since asbestos fibers released into environment can be a source of significant health hazard, countermeasures, such as replacement, removal, and encapsulation of weathered asbestos slate, should be initiated immediately.
Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.
Objectives: This study was performed to evaluate the total dust, size-selective dust, and heavy metal concentrations generated inside and outside toll booths on an expressway and to identify the source through analysis of the components of the deposited dust. Methods: A total of 32 samples were collected from eight expressway toll booths. Each total dust sample was collected using a 37 mm PVC filter attached to a personal air sampler. Heavy metal samples were collected according to NIOSH method 7300. The size-selective dust concentrations were identified using a DustMate, and deposited dust was analyzed by WD-XRF and UHR-FE-SEM. Results: The geometric mean concentrations of the total dust inside and outside the toll booths were 337.5 ㎍/㎥ and 342.7 ㎍/㎥, respectively. The overall concentrations of TSP, PM10, PM2.5, and PM1 were higher on the outside of the toll booths, as the particle size of dust was larger, and higher in the underground passage as the dust size was smaller. The real-time analysis of the dust concentrations of TSP, PM10, PM2.5, and PM1 revealed to be higher at morning and evening times than other times because of heavy traffic. The element components of deposited dust in the toll booth were related to natural sources rather than artificial sources. Among the chemical components in the deposited dust analyzed by WD-XRF, SiO2 was the highest. For the elements analyzed by UHR-FE-SEM, C was the highest, followed by O, and Si. Conclusions: In order to reduce the dust concentrations around toll booths on an expressway, it is necessary to periodically clean surrounding areas such as underground passages, and it is also necessary to remove deposited dust inside the toll booth from time to time.
Work-related low back pain(below LBP) is one of the major cause of morbidity, disability, limitation of activity and economic loss. Therefore the work-related LBP is one of the major issue in the field of industrial safety and health. This study was performed for detecting the risk factors and proposing the effective control programs of work-related LBP. The subjects were male workers employed at the welding and metal factory. The data was collected by self-reported questionnaire, interview and checking abdomen muscular and grasping power for two days on October, 1993. The contents of questionnaire were as follow: the experience of LBP, general characteristics, physical characteristics, employment status, type of work and working environment. The number of cases was 104 with a history of work-related LBP, so the prevalence of work-related LBP was 35.0%, and the number of controls was 140 without any history of LBP. As a result, marital status, educational level, abdomen muscular power, tenure, category of job, satisfaction of job, working posture, satisfaction for table and chair and lifting materials showed a statistical significance between the case and control groups. 284 Lifting jobs were quantified by NIOSH lifting equation method and ergonomic computer modelling methods. There were no significant differences in the action limit and disc compression force between group with LBP and without LBP. But in the lifting frequency and cumulative disc compression force there were significant differences. Therefore work-related LBP should be prevented by the ergonomic and environmental control.
Exposure to Diesel Particulate Matter (DPM) potentially causes adverse health effects (e.g. respiratory symptoms, lung cancer). Due to a lack of data on Elemental Carbon (EC) exposure levels in underground copper ore mining (unlike other underground mining industries such as non-metallic and coal mining), this case study aims to provide individual miners' EC exposure levels, and information on their work practices including use of personal protective equipment. EC measurement was carried out during different work activities (i.e. drilling, driving a loader, plant fitting, plant operation, driving a Specialized Mining Vehicle (SMV)) as per NIOSH Method 5040. The copper miners were working 10 h/day and 5 days/week. This study found that the most significant exposures to EC were reported from driving a loader (range $0.02-0.42mg/m^3$). Even though there were control systems (i.e. water tanks and DPM filters) on the diesel vehicles, around 49.5% of the results were over the adjusted recommendable exposure limit ($0.078mg/m^3$). This was probably due to: (1) driver's frequently getting in and out of the diesel vehicles and opening the windows of the diesel vehicles, and (2) inappropriate maintenance of the diesel vehicles and the DPM control systems. The use of the P2 type respirator provided was less than 19.2%. However, there was no significant difference between the day shift results and the night shift results. In order to prevent or minimize exposure to EC in the copper ore mine, it is recommended that the miners are educated in the need to wear the appropriate respirator provided during their work shifts, and to maintain the diesel engine and emission control systems on a regular basis. Consideration should be given to a specific examination of the diesel vehicles' air-conditioning filters and the air ventilation system to control excessive airborne contaminants in the underground copper mine.
Objective: The aim of this study was to comprehend major concepts and flows that penetrate international guides or standards for developing a quantitative possibility measure of human errors that can be committed or omitted in nuclear power plants. Background: For a few past decades, lots of researchers have studied the effect of stress and/or fatigue which can result in human errors. Thus, this study was carried out on the assumption that much of them were summarized as an international guidelines or manuals, if any, for human error prevention. Method: A literal survey was conducted with materials and documentation published by international organizations related with safety and standardization, such as ISO, OSHA, NIOSH, NASA, and so on with special reference to human error prevention through management of work stress and fatigue as major Performance Shaping Factors. Results: International guides or management manuals on stress or fatigue management for human error prevention hardly were found, and most researches seemed to concentrate on one of them individually. Conclusion: There was few vestige of research that studied both concurrently. However, it was verified that not a few researches have been tried to develop quantitative measures to estimate probability or job characteristics for human error prevention and/or performance downgrading. Application: The results of this study would help to develop a causal model of human errors due to work stress and fatigue that can result in unexpected accidents in nuclear power plant.
It is widely known that Environmental Tobacco Smoke(ETS) is not good for health. ETS is composed of a lot of chemicals. So indicators are needed to evaluate the risk of ETS in air. One of the indicators is Nicotine. Active sampler has been used to measure nicotine concentration in air. The experiments were conducted to compare the active sampler method with diffusive sampler in exposure chamber and smoking areas, respectively. Sampling rate was 40.5 ml/min in exposure chamber. Experimental sampling rate (40.5 ml/min) was more than theoretical sampling rate (33.52 ml/min). And the higher was the concentration in air, the higher was experimental sampling rate. The average desorption, rate was 113.6%. The overall precision was 7.31 %. The overall accuracy was 18.96%, which were under NIOSH criteria. The average(GM) concentrations of nicotine by two sampling methods were $8.29{\mu}g/m^{3}$ (active sampler), $7.54{\mu}/m^{3}$ (diffusive sampler) in smoking area and smoking room. There was no regression between active sampler and diffusive sampler ($R^{2}=0.2397$). But slope, coefficient of determination was 1.017, 0.9292, respectively after removing outliers. And the slope (1.017) was close to the theoretical slope (1). In conclusion, this study indicated that diffusive sampler can be used to evaluate concentration of nicotine in air instead of active sampler.
Purpose: A system to measure the visibility of agricultural tractor operators was designed and evaluated according to ISO standards, and a blind area diagram around the tested tractor was created based on the manual method recommended by the National Institute for Occupational Safety and Health (NIOSH). Methods: A visibility measurement system was designed and evaluated based on the ISO 5006 and ISO 5721-1 standards. Two bulbs used to simulate the operator's eyes were mounted on a bar with a supporting frame. A wooden frame was used to determine the seat index point position. The 12-m visibility test circle was divided into six sectors of vision, and the test tractor was placed at the center of the circle. Artificial light was supplied in the darkened environment, and shadow or masking effects were measured manually around the 12-m circle. Results: When the bulbs were placed at the operator's eye level, front visibility was good; no masking was found in the "A" vision sector, but larger masking widths were found in the "B" and "C" vision sectors. Since the masking width exceeded 700 mm, additional tests, such as movement of the light sources to both sides of the operator's eye level, were performed. Less than six masking effects were found in the semi-circle of vision to the front, and more than one masking was found in the "B" and "C" visual fields. The minimum distance between the centers of two masking effects exceeded 2500 mm when measured as a chord on the semi-circle of vision. A blind area diagram was created to define the exact nature of the blind spots and mirror visibility. Conclusions: Visibility evaluation is an effective way to enable proper and safe operation for agricultural tractor operators. Inclusion of this visibility evaluation test in the general testing process might aid tractor manufacturers.
Objectives: This study aimed to evaluate the effects of chronical exposure to high-level dusts on cellular immune function. Methods: The subjects were 110 male workers, among whom 60 were chronically exposed to high-level dusts in mica, limestone and iron mines. The remaining 50 were office workers. Ambient total, respirable dust and crystalline silica in the workplace were sampled using personal air samplers and analyzed according to NIOSH method 0500. Serum levels of hydrogen peroxide, lipid peroxide and superoxide misutase activity were measured using absorption chromatography. The subpopulations of CD4+, CD8+, natural killer cells (CD16+) and CD3+ T-lymphocytes were examined by two-color staining using monoclonal antibodies. Results: The concentration of hydrogen peroxide was significantly higher in exposed workers and superoxide dismutase activity was significantly higher in control workers. No significant difference in numbers of T-lymphocyte subpopulations were observed between exposed and control workers. A significant correlation in exposed workers was observed among total dusts, respirable dusts and crystalline silica. Hydrogen peroxide was significantly correlated with total dust (r=0.720, p<0.01), respirable dust (r=0.770, p<0.01) and crystalline silica (r=0.678, p<0.01). Concentration of hydrogen peroxide showed a significantly negative correlation with numbers of CD8+ cells (r=-0.274, p<0.01), CD3+ cells (r=-0.222, p<0.01) and natural killer cells (r=-0.556, p<0.01). Conclusions: These results suggest that chronical exposure to high-level dust affects cellular immune function and effects might mediate through reactive oxygen species and inflammatory response.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.