• Title/Summary/Keyword: NIL (nanoimprint lithography)

Search Result 87, Processing Time 0.025 seconds

Experiment and Numerical Study on Thermal Characteristics of UV-NIL Process Considering the Cure Kinetics of Photo-polymer (레진의 경화 반응을 고려한 UV-NIL공정의 열특성에 관한 실험 및 수치해석 연구)

  • Kim, Woo-Song;Park, Gyeong-Seo;Nam, Jin-Hyun;Yim, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay;Lim, Si-Hyeong;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1847-1850
    • /
    • 2008
  • The process conditions during ultraviolet nanoimprint lithography (UV-NIL) process such as temperature, stamping pressure, UV irradiation, etc. are effective factors for successful imprinting of complex and fine patterns. In this study, the effects of aluminum mold on the thermal characteristics of UV-NIL process were investigated through imprinting experiments and numerical simulations. The temperature of polymer resin on mold was measured to study thermal characteristics during UV curing. From the experimental and numerical results, the importance of curing reaction control for UV-NIL process was discussed for deformation characteristics.

  • PDF

Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers (무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조)

  • Park Jun-Hong;Pham Tuan-Anh;Lee Jae-Jong;Kim Dong-Pyo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.407-411
    • /
    • 2006
  • The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilaeane (PVS) or allylhydridopolycaybosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at $800^{\circ}C$ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.

A Study on Cause of Defects in NIL Molding Process using FEM (유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구)

  • Song, N.H.;Son, J.W.;Kim, D.E.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF

Soft Mold Deformation of Large-area UV Impring Process (대면적 UV 임프린팅 공정에서 유연 몰드의 변형)

  • Kim, Nam-Woong;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.53-59
    • /
    • 2011
  • Recently there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we focused on the deformation of the $2^{nd}$ generation TFT-LCD sized ($370{\times}470mm^2$) large-area soft mold in the UV imprinting process. A mold was fabricated with PDMS(Poly-dimethyl Siloxane) layered glass back plate(t0.5). Besides, the mold includes large surrounding wall type protrusions of 1.9 mm width and the via-hole(7 ${\mu}m$ diameter) patterend area. The large surrounding wall type protrusions cause the proximity effect which severely degrades the uniformity of residual layer in the via-hole patterend area. Therefore the deformation of the mold was calculated by finite element analysis to assess the effect of large surrounding wall type protrusions and the flexiblity of the mold. The deformation of soft mold was verified by the measurements qualitatively.

Viscoelastic Finite Element Analysis of Filling Process on the Moth-Eye Pattern (모스아이 패턴의 충전공정에 대한 점탄성 유한요소해석)

  • Kim, Kug Weon;Lee, Ki Yeon;Kim, Nam Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1838-1843
    • /
    • 2014
  • Nanoimprint lithography (NIL) fabrication process is regarded as the main alternative to existing expensive photo-lithography in areas such as micro- and nano-electronics including optical components and sensors, as well as the solar cell and display device industries. Functional patterns, including anti-reflective moth-eye pattern, photonic crystal pattern, fabricated by NIL can improve the overall efficiency of such devices. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. In this paper, a cavity-filling process of the moth-eye pattern during the thermal-NIL within the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer, were investigated with three-dimensional finite element analysis. The effects of initial thickness of polymer resist and imprinting pressure on cavity-filling process has been discussed. From the analysis results it was found that the cavity filling can be completed within 100 s, under the pressure of more than 4 MPa.

Magnetic & Crystallographic Properties of Patterned Media Fabricated by Nanoimprint Lithography and Co-Pt Electroplating (나노임프린트 패터닝과 자성박막도금을 이용하여 제작한 패턴드미디어용 자기패턴의 자기적 및 결정구조특성에 관한 연구)

  • Lee, B.K.;Lee, D.H.;Lee, M.B.;Kim, H.S.;Cho, E.H.;Sohn, J.S.;Lee, C.H.;Jeong, G.H.;Suh, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.49-53
    • /
    • 2008
  • Magnetic and crystallographic properties of patterned media fabricated by nanoimprint lithography and Co-Pt electroplating were studied. Thin films of Ru(20 nm)/Ta(5 nm)/$SiO_2$(100 nm) were deposited on Si(100) wafer and then 25 nm hole pattern was fabricated by nanoimprint lithography on substrate. The electroplated Co-Pt nano-dots have the diameter of 35 nm and the height of 27 nm. Magnetic dot patterns of Co-Pt alloy were created using electroplated Co-Pt alloy and then their properties were measured by MFM, SQUID, SEM, TEM and AFM. We observed single domain with perendicular anisotropy for each dot and achieved optimum coercivity of 2900 Oe. These results mean that patterned media fabricated by nanoimprint lithography and electroplating have good properties in view of extending superparamagnetic limit while satisfying the writability requirements with the present write heads.

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

Adhesion Characteristics between Stamp and Polymer Materials Used in Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피에서 사용되는 스탬프와 폴리머 재료 사이의 점착 특성)

  • Kim Kwang-Seop;Kang Ji-Hoon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.182-189
    • /
    • 2006
  • In this paper, the adhesion characteristics between a fused silica without or with an anti-sticking layer and a thermoplastic polymer film used in thermal NIL were investigated experimentally in order to identify the release performance of the anti-sticking layer. The anti-sticking layers were derived from fluoroalkylsilanes, (1H, 1 H, 2H, 2H-perfluorooctyl)trichlorosilane ($F_{13}-OTS$) and (3, 3, 3-trifluoropropyl)trichlorosilane (FPTS), and coated on the silica surface in vapor phase. The commercial polymers, mr-I 7020 and 8020 (micro resist technology, GmbH), for thermal NIL were spin-coated on Si substrate with a rectangular island which was fabricated by conventional microfabrication process to achieve small contact area and easy alignment of flat contact sur- faces. Experimental conditions were similar to the process conditions of thermal NIL. When the polymer film on the island was separated from the silica surface after imprint process, the adhesion force between the silica surface and the polymer film was measured and the surfaces of the silica and the polymer film after the separation were observed. As a result, the anti-sticking layers remarkably reduced the adhesion force and the surface damage of polymer film and the chain length of silane affects the adhesion characteristics. The anti-sticking layers derived from FPTS and $F_{13}-OTS$ reduced the adhesion force per unit area to 38% and 16% of the silica sur-faces without an anti-sticking layer, respectively. The anti-sticking layer derived from $F_{13}-OTS$ was more effective to reduce the adhesion, while both of the anti-sticking layers prevented the surface damages of the polymer film. Finally, it is also found that the adhesion characteristics of mr-I 7020 and mr-I 8020 polymer films were similar with each other.