• Title/Summary/Keyword: NIH 3T3

Search Result 308, Processing Time 0.039 seconds

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young;Hwang, Cheong-Soo;Byun, Jong-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.657-662
    • /
    • 2012
  • Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

Anti-oxidant Effect of Agastache rugosa on Oxidative Damage Induced by $H_2O_2$ in NIH 3T3 Cell

  • Hong, Se-Chul;Jeong, Jin-Boo;Park, Gwang-Hun;Kim, Jeong-Sook;Seo, Eul-Won;Jeong, Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.22 no.6
    • /
    • pp.498-505
    • /
    • 2009
  • The plant Agastache rugosa Kuntze has various physiological and pharmacological activities. Especially, it has been regarded as a valuable source for the treatment of anti-inflammatory and oxidative stress-induced disorders. However, little has been known about the functional role of it on oxidative damage in mammalian cells by ROS. In this study, we investigated the DPPH radical, hydroxyl radical, hydrogen peroxide and intracellular ROS scavenging capacity, and $Fe^{2+}$ chelating activity of the extracts from Agastache rugosa. In addition, we evaluated whether the extract can be capable of reducing $H_2O_2$-induced DNA and cell damage in NIH 3T3 cells. These extracts showed a dose-dependent free radical scavenging capacity and a protective effect on DNA damage and the lipid peroxidation causing the cell damage by $H_2O_2$. Therefore, these results suggest that Agastache rugosa is useful as a herbal medicine for the chemoprevention against oxidative carcinogenesis.

Effects of the Chestnut Inner Shell Extract on the Expression of Adhesion Molecules, Fibronectin and Vitronectin, of Skin Fibroblasts in Culture

  • Chi, Yeon-Sook;Heo, Moon-Young;Chung, Ji-Hun;Jo, Byoung-Kee;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.469-474
    • /
    • 2002
  • The inner shell of the chestnut (Castanea crenata S. et Z., Fagaceae) has been used as an anti-wrinkle/skin firming agent in East Asia, and preliminary experiments have found that a 70% ethanol extract from this plant material can prevent cell detachment of skin fibroblasts from culture plates. In order to examine the molecular mechanisms underlying this phenomenon, its effects on the expression of adhesion molecules, such as fibronectin and vitronectin, were investigated using the mouse skin fibroblast cell line, NIH/3T3. Using fixed-cell ELISA, Western blotting and immunofluorescence cell staining, it was clearly demonstrated that the chestnut inner shell extract enhanced the expression of the cell-associated fibronectin and vitronectin. Scoparone (6,7-dimethoxycoumarin), isolated from the extract, also possessed similar properties. These findings suggest that the enhanced expression of the adhesion molecules may be one of the molecular mechanisms for how the chestnut inner shell extract preventing cell detachment and may be also responsible for its anti-wrinkle/skin firming effect.

Mycoplasma exploits mammalian tunneling nanotubes for cell-to-cell dissemination

  • Kim, Bong-Woo;Lee, Jae-Seon;Ko, Young-Gyu
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.490-495
    • /
    • 2019
  • Using tunneling nanotubes (TNTs), various pathological molecules and viruses disseminate to adjacent cells intercellularly. Here, we show that the intracellular invasion of Mycoplasma hyorhinis induces the formation of actin- and tubulin-based TNTs in various mammalian cell lines. M. hyorhinis was found in TNTs generated by M. hyorhinis infection in NIH3T3 cells. Because mycoplasma-free recipient cells received mycoplasmas from M. hyorhinis-infected donor cells in a mixed co-culture system and not a spatially separated co-culture system, direct cell-to-cell contact via TNTs was necessary for the intracellular dissemination of M. hyorhinis. The activity of Rac1, which is a small GTP binding protein, was increased by the intracellular invasion of M. hyorhinis, and its pharmacological and genetic inhibition prevented M. hyorhinis infection-induced TNT generation in NIH3T3 cells. The pharmacological and genetic inhibition of Rac1 also reduced the cell-to-cell dissemination of M. hyorhinis. Based on these data, we conclude that intracellular invasion of M. hyorhinis induces the formation of TNTs, which are used for the cell-to-cell dissemination of M. hyorhinis.

Role of Shc and Phosphoinositide 3-Kinase in Heregulin-Induced Mitogenic Signaling via ErbB3

  • Kim, Myong-Soo;Koland, John G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.507-513
    • /
    • 2000
  • ErbB3/HER3 is a cell surface receptor which belongs to the ErbB/HER subfamily of receptor protein tyrosine kinases. When expressed in NIH/3T3 cells, ErbB3 can form heterodimeric coreceptor with endogenous ErbB2. Among known intracellular effectors of the ErbB2/ErbB3 are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. In the present study, we studied relative contributions of above two distinct signaling pathways to the heregulin-induced mitogenic response via activated ErbB3. For this, clonal NIH-3T3 cell lines expressing wild-type ErbB3 and ErbB3 mutants were stimulated with $heregulin{\beta}_1$. While cyclin D1 level was markedly high and further increased by treatment of heregulin in cells expressing wild-type ErbB3, the elimination of either Shc binding or PI 3-kinase binding lowered both levels. This result was supported by the reduction of cyclin $D_1$ expression by preteatment with MAPK kinase inhibitor or PI 3-kinase inhibitor before stimulation with heregulin. In accordance with the cyclin $D_1$ expression, elimination of either Shc binding or PI 3-kinase binding reduced the heregulin-induced DNA synthesis and cell growth rate. Our results obtained by the comparison of wild-type and ErbB3 mutants indicate that the full induction of the cell cycle progression through $G_1/S$ phase by ErbB3 activation is dependent on both Shc/MAPK and PI 3-kinase signal transduction pathways.

  • PDF

3' end of putative sequences of the packaging signal in moloney-murine leukemia virus (Moloney murine Leukemia Virus에서 포장신호의 가능한 3' 끝의 염기서열)

  • 박종상
    • Korean Journal of Microbiology
    • /
    • v.26 no.2
    • /
    • pp.101-105
    • /
    • 1988
  • 6M-MuLV mutants containing deldtions around the putative packaging signal were constructed by using recombinant DNA technique and transfected into NIH/3T3 cell. 2 of 6 mutants can not be packaged into virions even in the presence of the wild type helper virus. The boundary between the packagible and the non-packagible genome is located around Pvu I site, 421 nucleotide downstream from the 5' end of M-MuLV genome. 10 base pair inverted repeat sequence (GAGUCCAAAA) which can make stem structure around Pvu Isite could be the putative packaging signal.

  • PDF

Chemopreventive Effect of Vegetable or Fruit Extract Against Total Diesel Exhaust Particle Extract in NIH/3T3 Cells Using Alkaline Single Cell Gel Electrophoresis (총 디젤분진의 DNA 손상작용과 야채 및 과일추출물의 보호효과)

  • Heo Chan;Kim Nam-Yee;Heo Moon-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.127-138
    • /
    • 2006
  • In urban areas, diesel exhaust particles (DEP) are probably a major component of particulate matters, especially in Korea where drive many diesel vehicles. The aim of this study was to investigate genotoxic effects of DEP using single ceil gel electrophoresis. In order to evaluate the mechanisms of DEP genotoxicity, the rat microsome mediated and DNA repair enzyme treated comet assays together with conventional comet assay were performed. Total diesel particles (DEPT) was collected without site fractionation from diesel engine bus and dichloromethane extract was obtained. The organic extract of DEPT revealed DNA damage itself in NIH/3T3 cells. The level of DNA breaks plus oxidative DNA lesions and microsome mediated DNA damage was assessed by modified single cell gel eletrophoresis. DEPT was able to induce oxidative DNA damage as well as microsome mediated DNA damage. Vitamin C as an model antioxidant reduced DNA damage in endonuclase III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor. reduced DNA damage in the presence of S-9 mixture. $DEP_T$ is the sources of oxidative stress, but antioxidants can significantly reduce oxidative DNA dmage. And $DEP_T$ may contain indirect mutagens which can be inhibited by CYP1A1 inhibitors. The ethanol extracts of the mixed vegetables (BV) or the mixed fruits (BF) were evaluated for their in vitro antigenotoxic effects. BV and BF showed potent Inhibitory effects against DEPT induced DNA damage with oxidative DNA lesions and in the prescence of S-9 mixture. These results indicate that BV and BF could prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P4501A1 in cell culture.