• Title/Summary/Keyword: NIH/3T3 fibroblasts

Search Result 78, Processing Time 0.038 seconds

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young;Hwang, Cheong-Soo;Byun, Jong-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.657-662
    • /
    • 2012
  • Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells

  • Kim, Hak Jun;Shim, Hye Eun;Lee, Jun Hyuck;Kang, Yong-Cheol;Hur, Young Baek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1989-1996
    • /
    • 2015
  • Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1℃/min in a -80℃ freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

Suppression of Cyclooxygenase-2 Expression of Skin Fibroblasts by Wogonin, a Plant Flavone from Scutellaria Radix

  • Chi, Yeon-Sook;Kim, Hyun-Pyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.96-96
    • /
    • 2003
  • Previously, wogonin (5,7-dihydroxy-8-methoxyflavone) was found to suppress proinflammatory enzyme expression including cyclooxygenase-2 (COX-2), contributing to in vivo anti-inflammatory activity against skin inflammation. However, the detailed effect on each skin cell type has not been understood. Therefore, present investigation was carried out to find the effect of wogonin on inflammation-associated gene expression from skin fibroblasts in culture using reverse transcriptase-polymerase chain reaction. As a result, it was found that wogonin (10 - 100 ${\mu}$M) clearly down-regulated COX -2 expression from NIH/3T3 cells treated with 12-O-tetradecanoylphorbol 13-acetate, interleukin-1${\beta}$ or tumor necrosis factor-a. But, the expression levels of COX-1, interleukin-1${\beta}$ and fibronectin were not significantly affected. This finding was well correlated with significant reduction of prostaglandin E$_2$(PGE$_2$) production by wogonin. As a comparison, NS-398 (selective cyclooxygenase-2 inhibitor) did not suppress COX -2 expression and other gene levels, while PGE$_2$production was potently reduced at 0.1 - 10 ${\mu}$M. All these results suggest that COX -2 down-regulation of skin fibroblasts may be, at least in part, one of anti-inflammatory mechanisms of wogonin against skin inflammation.

  • PDF

Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

  • Chen, Xuenan;Wang, Manying;Xu, Xiaohao;Liu, Jianzeng;Mei, Bing;Fu, Pingping;Zhao, Daqing;Sun, Liwei
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.411-418
    • /
    • 2017
  • Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor ${\beta}1$, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor ${\beta}1$ and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

Cytotoxicity of Paraquat or Bentazone and Compensatory Effects of 3-Methylcholanthrene on the Rat Liver (Paraquat 및 Bentazone의 세포독성과 흰쥐 간에서 3-Methylcholanchrene의 독성경감효과)

  • Rim, Yo-Sup;Han, Du-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.155-161
    • /
    • 2001
  • This study was carried out to investigate cytotoxicity of paraquat or bentazone on NIH 3T3 fibroblasts, toxicity of paraquat or bentazone, and compensatory effects of 3-Methylcholanthrene(3-MC) on the rat liver. In order to MTT assay, the $5.0{\times}10^4$ cell/mL of NIH 3T3 fibroblast in each well of 24 multidish were cultured. After 24 hours, the cells were treated with solution of paraquat or bentazone(1, 25, 50, 100 ${\mu}M$ respectively). After the NIH 3T3 fibroblast of all groups were cultured in same condition for 48 hours. MTT assay were performed to evaluate the cytotoxicity of cell organelles. Paraquat or bentazone $MTT_{50}$ were 1668.97 ${\mu}M$ and 1506.97 ${\mu}M$, respectively. These $IC_{50}$ of paraquat or bentazone were decided low cytotoxicity by Borenfreund. In order to observe the toxicity and compensatory effects of paraquat or bentazone on the rat liver, Sprague-Dawley male rats were used as experimental animals and divided into paraquat or bentazone only treated group and simultaneous application group of paraquat or bentazone and 3-MC. At 30 min and 1, 3, 6, 12, 24, 48 and 96 hrs interval after each treatment, the animals were sacrificed by decapitation and liver were immediately removed, immersed in fixatives, and processed with routine method for light microscopic study. Paraffin sections were stained with H-E, PAM and Best Carmine. Under the light microscope, degenerative changes of hepatic lobules were frequently observed in portal area from 3 hrs after paraquat or bentazone treatment. All hepatic cells were induced degenerative change at 12 hrs and more severe degenerative change at 48 hrs after paraquat or bentazone treatment. Especially, hepatic cells of bentazone only treated group were distinctly showed pyknotic. Glycogen granules were increased in portal area at 3 hrs, all hepatic cells at 12 hrs and remarkably increased at 48 hrs after paraquat or bentazone treated group. But hepatic cells of bentazone only treated group were regeneration at 48 hrs from portal area and glycogen granules of hepatic cells of paraquat or bentazone and 3-MC combination treated group showed in central area only at 48 hrs. The results indicate that 3-MC may be decrease paraquat or bentazone cytotoxicity on the rat liver.

  • PDF

Cytotoxicity of paraquat and compensatory effects of 3-methylcholanthrene in rat lung (Paraquat의 세포독성과 흰쥐의 폐에서 3-Methylcholanthrene의 독성경감효과)

  • Rim, Yo-Sup;Kim, Doc-Soo;Han, Du-Seok;Hwang, In-Taek
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.96-104
    • /
    • 2002
  • This study was carried out to investigate cytotoxicity of paraquat on NIH 3T3 fibroblasts, toxicity of paraquat and compensatory effects of 3-methylcholanthrene (3-MC) on the rat lung. In order to conduct MIT [3-(4,5-Dimethylthiazol-2-yl) -2,5-diphenyl -2H-tetrazolium-bromide] and NR (Neutral red) assay, the $5.0{\times}10^4cell/ml$ of NIH 3T3 fibroblast in each well of 24 multi-dish were cultured. After 24 hours, the cells were treated with solution of paraquat (1, 25, 50 and $100{\mu}M$ respectively). After the NIH 3T3 fibroblast of all groups were cultured in same condition for 48 hours. MIT and NR assay were performed to evaluate the cytotoxicity of cell organelles. $MTT_{50}\;and\;NR_{50}$ of paraquat were $1668.97{\mu}M\;and\;1030.85{\mu}M$, respectively. These $IC_{50}$ of Paraquat were decided as a low cytotoxicity by Borenfreund and Puemer (1984). In order to observe the toxicity and compensatory effects of paraquat on the rat lung, Spraque Dawley male rats were used as experimental animals and were divided into paraquat only treated group and simultaneous application group of paraquat and 3-MC, at 30 min and 1, 3, 6, 12, 24, 48 and 96 hrs interval after each treatment. The animals were sacrificed by decapitation and their or the lungs were immediately removed, immersed in fixatives, and were processed with routine method for light microscopic study. Paraffin sections were stained with H&E and iron hematoxylin of Verhoeff. Under the light microscopy, erythrocytes were full in alveolar capillaries at 3 hrs and congested at 24 hrs after paraquat administration. The great alveolar cells (Type II cell) were increased and mitosis of great alveolar were observed in interalveolar septa. Many lymphocytes, macrophages and polymorphonuclear (PMN) cells were observed in connective tissue surrounding lung tissue and germinal center in lymph follicles of terminal bronchiole. Alveolar macrophages were increased in interalveolar septa and alveoli at 48 hrs. And observed many alveolar macrophages at 96 hrs. In iron hematoxylin stain of Verhoeff, Collagen fiber were increased in respiratory bronchiole, interalveolar septa and alveoli and breath of alveoli, and alveolar pore were broaden. But, in paraquat plus 3-MC treated group, morphological changes were mild in lung tissue. These results indicate that 3-MC has a compensatory effects against toxicity of paraquat by conjugation with oxygen.

Antiproliferative Effects of Panu ginseng Glycosides on DNA Synthesis in Cultured Mouse Fibroblasts (인삼에서 추출한 글리코시드가 배양한 마우스 섬유아세포의 핵산합성에 미치는 영향)

  • Byun, Boo-Hyeong;Shin, In-Cheol;Lee, Lil-Ha;Joe, Cheol-O
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.114-116
    • /
    • 1995
  • Panax ginseng ginsenosides were examined for their affects on the DNA synthesis. The DNA 1 synthesis was measured by the thymidine incorporation into NIH3T3 cells. The ginsenoside, panaxytriol, $Rh_1$ and $Rh_2$ showed reduced [$^{3}H$]-thymidine incorporation. However, other ginsenosides of $Rh_1$, $Rh_2$ and $Rh_3$ did not inhibit DNA synthesis. Among the various ginsenosides, ginsenoside $Rh_2$ was found to be the most inhibitory on DNA synthesis. We suggest $Rh_2$ as one of the potential choice of antiproliferative drugs.

  • PDF

Screening of Cytotoxicity of Hexane Extracts from Cornis fructus

  • Chun, Hyun-Ja;Choi, Won-Hyung;Lee, Jeong-Ho;Lee, Ji-Su;Yang, Hyun-Ok;Baek, Seung-Hwa
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.272.1-272.1
    • /
    • 2003
  • Cornis fructus were extracted by successive extraction and then fractionated with hexane extract to get active fractions. This study was performed to determine the cytotoxic effect of hexane extract from Cornis fructus on NIH 3T3 fibroblasts and cancer cell lines using MTT assay. Hexane extract showed cytotoxic effect against A549, B16 melanoma and MDA-MB-231. Further fractionation with hexane extract were performed to obtain effective fraction, fraction 3 showed the cytotoxic effect against A549 and MDA-MB-231 cell line.

  • PDF

Antioxidative Effect of Stachys japonica Miq Extract on Cultured NIH3T3 Fibroblasts Damaged by Ferrous chloride, Mordant (염화제일철 매염제로 손상된 배양 NIH3T3 섬유아세포에 대한 석잠풀 추출물의 항산화 효과)

  • Sohn, Young-Woo;Yoo, Sun-Mi
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.201-206
    • /
    • 2021
  • The aim of this study was to examined the dermatoxicity of ferrous chloride (FeCl2) and the antioxidative effect of Stachys japonica Miq (SJ) extract on FeCl2-induced cytotoxicity. For this study, superoxide anion-radical (SAR)-scavenging and superoxide dismutase (SOD)-like abilities with cell viability were done. FeCl2 showed a significant decrease of cell viability in dose-dependent manner, and it was mid-toxic. The caffeic acid showed a significant increase of cell viability against FeCl2-induced cytotoxicity. In the protective effect of SJ extract on FeCl2-induced cytotoxicity, it showed SAR-scavenging and SOD-like abilities with a significant increase of cell viability. From these results, the cytotoxicity of FeCl2 is correlated with oxidative stress, and SJ extract effectively protected the cytotoxicity of FeCl2 by antioxidative effect. Conclusively, the natural resources like SJ extract may be a useful fundamental materials for the development of an alternative antioxidant.