• Title/Summary/Keyword: NH3 pretreatment

Search Result 62, Processing Time 0.025 seconds

Catalytic Combustion of Benzene over CuO-CeO2 Mixed Oxides Prepared by Co-precipitation Method (침전법으로 제조된 CuO-CeO2 혼합산화물에서 벤젠의 촉매연소반응)

  • Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • Catalytic combustion of benzene over CuO-$CeO_2$ mixed oxides prepared by co-precipitation method were investigated. The CuO-$CeO_2$ mixed oxides were also prepared using different precipitant and CuO precursor. They were characterized by XRD, BET, XPS and $H_2-TPR$. In the CuO-$CeO_2$ catalysts, characteristic copper oxide peaks were shown at $2{\Theta}=35.5^{\circ}$ and $38.5^{\circ}$ regardless of the precipitant. The Cu0.35 catalyst prepared using $NH_4OH$ as a precipitant revealed the highest activity on the combustion of benzene. In addition, the pretreatment with hydrogen enhanced the catalytic activity and the catalyst reduced at $400^{\circ}C$ showed the highest activity on the combustion of benzene.

Growth of highly purified carbon nanotubes by thermal chemical vapor deposition (열화학기상증착법에 의한 고순도 탄소나노튜브의 성장)

  • Lee, Tae-Jae;Lee, Cheol-Jin;Kim, Dae-Won;Park, Jung-Hoon;Son, Kwon-Hee;Lyu, Seung-Chul;Song, Hong-Ki;Kim, Seong-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1839-1842
    • /
    • 1999
  • We have synthesized carbon nanotubes by thermal chemical vapor deposition of $C_2H_2$ on transition metal-coated silicon substrates. Carbon nanotubes are uniformly synthesized on a large area of the plain Si substrates, different from Previously reported porous Si substrates. It is observed that surface modification of transition metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_3$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_2H_2$ gas. We will demonstrate that the diameters of carbon naotubes can be controlled by applying the different transition metals.

  • PDF

Characteristics of Carbon Nanotube with Synthetic Conditions in Catalytic Chemical Vapor Deposition (촉매 화학 기상 증착법의 제조 조건에 따른 탄소 나노튜브의 특성)

  • Kim, Hyeon-Jin;Lee, Im-Ryeol
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.458-463
    • /
    • 2002
  • Carbon nanotubes were synthesized at various conditions using Ni-catalytic thermal chemical vapor deposition method and their characteristic properties were investigated by SEM, TEM and Raman spectroscopy. Carbon nanotubes were formed on very fine Ni-catalytic particles. The carbon nanotubes synthesized by thermal decomposition of acetylene at $700^{\circ}C$ had a coiled shape, while those synthesized at $850^{\circ}C$ showed a curved and Y-shape having a bamboo-like morphology. It was found that the carbon nanotube was also made on the fine Ni-catalytic particles formed on the surface of 100~400nm sized large ones after pretreatment with $NH_3$.ber composites show the high dielectric constant and large conduction loss which is increased with anisotropy of fiber arrangement. It is, therefore, proposed that the glass and carbon fiber composites can be used as the impedance transformer (surface layer) and microwave reflector, respectively. By inserting the foam core or honeycomb core (which can be treated as an air layer) between glass and carbon fiber composites, microwave absorption above 10 dB (90% absorbance) in 4-12 GHz can be obtained. The proposed fiber composites laminates with sandwitch structure have high potential as lightweight and high strength microwave absorbers.

The growing characteristic carbon nanotubes depending on their pretreatment condition (전처리 조건에 따른 탄소나노튜브의 성장 특성)

  • Jung, Kyung-Ho;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.779-782
    • /
    • 2003
  • Hot filament 플라즈마 화학기상 증착법 (HFPECVD)를 사용하여 전처리 조건에 따른 탄소나노튜브의 성장 특성을 관찰하였다. 암모니아 ($NH_3$)를 희석가스로 사용하였고, 아세틸렌 ($C_2H_2$)를 탄소 원료가스로 각각 사용하였다. 암모니아 가스 플라즈마를 사용하여 전처리 된 니켈 촉매 층의 SEM (Scanning Electron Microscopy) 이미지를 관찰하여 본 결과, 나노 사이즈의 촉매 그레인(grain)을 발견할 수 있었다. 그리고 탄소 나노튜브의 직경과 성장 밀도 또한 전처리 된 촉매 층에 따라 다른 양상을 보였다. TEM (Transmission Electron Microscopy)를 사용하여 탄소나노튜브를 관찰한 결과 공동구조(hollow)를 한 다중벽 탄소 나노튜브(MWCNT)를 관찰할 수 있었다. 성장된 나노튜브는 끝에 금속팁을 가지고 있으며, 나노튜브의 팁은 촉매로 사용한 것과 같은 물질로 구성되어 있었다. Raman spectroscopy를 사용하여 측정된 B-밴드와 G-밴드의 피크들은 각각 $1360cm^{-1}$$1598cm^{-1}$ 부근에서 나타났으며, 전처리 조건을 달리하여 성장시킨 탄소나노튜브 필름에서 이들 두 피크의 위치는 이동하지 않았고, 두 피크의 강도 비율 ($I_G/I_D$)은 전처리 조건에 따라 변하였다.

  • PDF

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • Choe, Eun-Chang;Park, Yong-Seop;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF

Growth of Vertically Aligned Carbon Nanotubes on Co-Ni Alloy Metal (Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장)

  • Ryu, Jae-Eun;Lee, Cheol-Jin;Lee, Tae-Jae;Son, Gyeong-Hui;Sin, Dong-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.451-454
    • /
    • 2000
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.

  • PDF

Removal of Nitrogen and Phosphorus Using Struvite Crystallization (Struvite 결정화에 의한 질소 및 인의 제거)

  • Weon, Seung-Yeon;Park, Seung-Kook;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.599-607
    • /
    • 2000
  • In this research, ${NH_4}^+-N$ and ${PO_4}^{3-}-P$ in wastewater were removed by crystallization. Nitrogen and phosphate have been regarded as key nutrients in the eutrophication of rivers and lakes. Struvite, $MgNH_4PO_4{\cdot}6H_2O$, is insoluble in alkaline solutions. Fertilizer industry wastewater contains organic and nitrogen concentration of 330 mg/L and 550 mg/L, respectively. Nitrogen in this wastewater cannot be treated by conventional biological treatment without physicochemical pretreatment, because nitrogen concentration is relatively high compared to organic concentration. Magnesium ions used in this study were from bittern and commercial magnesium salts of $MgCl_2$ and $Mg(OH)_2$. Bittern obtained as a by-product of seasalt manufacture contains $8,000mg\;Ca^{2+}/L$ and $32,000mg\;Mg^{2+}/L$. Optimum initial pH was 10.5~11.0 and the reaction was complete or done in 2 min. Nitrogen removal efficiency using bittern, $MgCl_2 $ and $Mg(OH)_2$ (as source of $Mg^{2+}$) was 71 %, 81% and 83%. respectively. Phosphate removal efficiency was 99%, 98% and 93%, respectively. Therefore, bittern, $MgCl_2$ and $Mg(OH)_2$ can be efficiently used as $Mg^{2+}$ source for crystallization of nitrogen and phosphate. However, bittern is economically favorable $Mg^{2+}$ source for removing nitrogen and phosphate in wastewater.

  • PDF

Manufacture of $\alpha-Al_2O_3$ from aluminous Shale (반토혈암으로부터 $\alpha-Al_2O_3$제조에 관한 연구)

  • 한오형;마동철;최경수
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.21-26
    • /
    • 1994
  • In present study an attempt has been made to extract the high purity $Al_2O_3$from domestic aluminous shale. The processes of the salt roasting with ammonium sulfate, extraction with sulfuric acid and calcination were adopted. In the extraction of alumina, the effects of the sulfuric acid concentration, the reaction time and the temperature has been investigated. The reaction products were analyzed by X-ray diffraction, DTA-TG, chemical analysis and SEM. The results are summerized as follows: 1)The pretreatment conditions were 0.6M-$(NH_4)_2SO_4$and $650^{\circ}C$ in sintering temperature. 2) The optimum extraction conditions were $10%-H_2SO_4$ and 240 minutes in acid treating time. 3)Physical properties of sintering materials were confirmed as $\alpha-Al_2O_3$ by X-ray diffraction method and the purity of $\alpha-Al_2O_3$ was 99.23%.

  • PDF

Degradation of Fat, Oil, and Grease (FOGs) by Lipase-Producing Bacterium Pseudomonas sp. Strain D2D3

  • Shon, Ho-Kyong;Tian, Dan;Kwon, Dae-Young;Jin, Chang-Suk;Lee, Tae-Jong;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.583-591
    • /
    • 2002
  • Biodegradation of fat, oil, and grease (FOGs) plays an Important role in wastewater management and water pollution control. However, many industrial food-processing and food restaurants generate FOG-containing waste waters for which there Is no acceptable technology for their pretreatment. To solve these problems, this study evaluated the feasibility of effective FOG-degrading microorganisms on the biodegradation of olive oil and FOG-containing wastewater. Twenty-two strains capable of degrading FOGs were isolated from five FOG-contaminated sites for the evaluation of their FOG degradation capabilities. Among twenty-two strains tested, the lipase-producing Pseudomonas sp. strain D2D3 was selected for actual FOG wastewater treatment. Its biodegradability was performed at 3$0^{\circ}C$ and pH 8. The extent of FOG removal efficiency was varied for each FOG tested, being the highest for olive oil and animal fat (94.5% and 94.4%), and the lowest for safflower oil (62%). The addition of organic nitrogen sources such as yeast extract, soytone, and peptone enhanced the removal efficiency of FOGs, but the addition of the inorganic nitrogen nutrients such as $NH_4$Cl and $(NH_4)_2SO_4$ did not increase. The $KH_2PO_4$ sources in 0.25% to 0.5% concentrations showed more than 90% degradability. As a result, the main pathway for the oxidation of fatty acids results in the removal of two carbon atoms as acetyl-CoA with each reaction sequence: $\beta$-oxidation. Its lipase activity showed 38.5 U/g DCW using the optimal media after 9 h. Real wastewater and FOGs were used for determining the removal efficiency by using Pseudomonas sp. strain D2D3 bioadditive. The degradation by Pseudomonas sp. strain D2D3 was 41% higher than that of the naturally occurring bacteria. This result indicated that the use of isolated Pseudomonas sp. strain D2D3 in a bioaugmentating grease trap or other processes might possibly be sufficient to acclimate biological processes for degrading FOGs.

Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages

  • Choe, Ji-Hyun;Yi, Young-Joo;Lee, Myeong-Seok;Seo, Dong-Won;Yun, Bong-Sik;Lee, Sang-Myeong
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.319-326
    • /
    • 2015
  • Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin $E_2$ through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-${\alpha}$ and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor ${\kappa}B$, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo.