• Title/Summary/Keyword: NGSS

Search Result 21, Processing Time 0.029 seconds

Exploring Alignments among International Baccalaureate, Next Generation Science Standards, and the 2015 Science Curriculum of Korea, Focusing on Elementary Science

  • Shin, Myeong-Kyeong;Kim, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.470-475
    • /
    • 2021
  • This study aimed to explore alignments among three curricula based on the contents of the university level curriculum. The 2015 revised curriculum, International Baccalaureate(IB), and Next Generation Science Standards(NGSS) were selected for this study, and a college textbook was analyzed to compare the curricula. As the age groups studying the curricular were different, we reorganized them according to school ages prior to conducting the study. The results of the analysis were: first, the contents of the 2015 revised curriculum did not sufficiently elaborate on the natural hazards related to humans, unlike the university level, IB PYP, and NGSS curricula. Third, there are different ways of introducing scientific vocabulary curricula, meaning that the number of scientific vocabularies in the 2015 revised curriculum was less than that in the IB, PYP, and NGSS.

Interdisciplinary Knowledge for Teaching: A Model for Epistemic Support in Elementary Classrooms

  • Lilly, Sarah;Chiu, Jennifer L.;McElhaney, Kevin W.
    • Research in Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.137-173
    • /
    • 2021
  • Research and national standards, such as the Next Generation Science Standards (NGSS) in the United States, promote the development and implementation of K-12 interdisciplinary curricula integrating the disciplines of science, technology, engineering, mathematics, and computer science (STEM+CS). However, little research has explored how teachers provide epistemic support in interdisciplinary contexts or the factors that inform teachers' epistemic support in STEM+CS activities. The goal of this paper is to articulate how interdisciplinary instruction complicates epistemic knowledge and resources needed for teachers' instructional decision-making. Toward these ends, this paper builds upon existing models of teachers' instructional decision-making in individual STEM+CS disciplines to highlight specific challenges and opportunities of interdisciplinary approaches on classroom epistemic supports. First, we offer considerations as to how teachers can provide epistemic support for students to engage in disciplinary practices across mathematics, science, engineering, and computer science. We then support these considerations using examples from our studies in elementary classrooms using integrated STEM+CS curriculum materials. We focus on an elementary school context, as elementary teachers necessarily integrate disciplines as part of their teaching practice when enacting NGSS-aligned curricula. Further, we argue that as STEM+CS interdisciplinary curricula in the form of NGSS-aligned, project-based units become more prevalent in elementary settings, careful attention and support needs to be given to help teachers not only engage their students in disciplinary practices across STEM+CS disciplines, but also to understand why and how these disciplinary practices should be used. Implications include recommendations for the design of professional learning experiences and curriculum materials.

A Simulation Analysis of Abnormal Traffic-Flooding Attack under the NGSS environment

  • Kim, Hwan-Kuk;Seo, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1568-1570
    • /
    • 2005
  • The internet is already a part of life. It is very convenient and people can do almost everything with internet that should be done in real life. Along with the increase of the number of internet user, various network attacks through the internet have been increased as well. Also, Large-scale network attacks are a cause great concern for the computer security communication. These network attack becomes biggest threat could be down utility of network availability. Most of the techniques to detect and analyze abnormal traffic are statistic technique using mathematical modeling. It is difficult accurately to analyze abnormal traffic attack using mathematical modeling, but network simulation technique is possible to analyze and simulate under various network simulation environment with attack scenarios. This paper performs modeling and simulation under virtual network environment including $NGSS^{1}$ system to analyze abnormal traffic-flooding attack.

  • PDF

Analysis of Science Educational Contents of Singapore, Canada and US Focused on the Integrated Concepts (통합개념을 중심으로 한 싱가포르, 캐나다와 미국의 과학교육과정 내용 요소 분석)

  • Lee, Yoonha;Yoon, Heojeong;Song, Joo-Yeon;Bang, Dami
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.1
    • /
    • pp.21-32
    • /
    • 2014
  • The feasibility of integrated concepts as a key element in designing integrated science curriculum has been investigated by analysing science contents included in performance expectations stated at different grades. The science curriculum of Singapore and the state of Ontario in Canada, and next generation of science standard (NGSS) were selected. Each of them presents theme, fundamental concepts, and crosscutting concepts, which has the characteristics of integrated concepts proposed in the study. Analysis showed that theme, fundamental concepts, and crosscutting concepts were influenced by the characteristics of each curriculum. In addition, science contents related to integrated concepts at different grades varied with the nature of integrated concepts. Based on results, some suggestions were made. First, the total number of integrated concepts should be considered for designing integrated curriculum. Second, the nature of integrated concepts and science contents associated with the integrated concepts should be considered. The integrated concepts should be vast and deep enough in the meaning to contain various content knowledge of different science domains. Third, it should be considered that how the integrated concepts have to be presented at different grades.

Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

  • Park, Chan Mi;Jeong, Heon;Ma, Sang Hoon;Kim, Hyun Min;Joung, Young Hee;Yun, Chul-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.536-545
    • /
    • 2019
  • Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.

Analysis of Inquiry Activities in High School Chemistry II Textbooks based on the 2009 Revised Science Curriculum: Focus on 8 Science Practices (2009 개정 교육과정에 따른 화학II교과서에 포함된 탐구 활동 분석: 8가지 과학 실천을 중심으로)

  • Jeon, Young;Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.59-68
    • /
    • 2016
  • The cultivation of scientific literacy in recent science education can be improved by experiencing and understanding scientific inquiry by which scientific knowledge is formed. The National Research Council(NRC) released the Next Generation Science Standards (NGSS) including 8 practices of science that help students experience scientists' inquiry and subdividing achievement standards to perform 8 practices of science into by grade clusters. This study was intended to examine science inquiry activities included in 4 high school chemistry II textbooks developed by the 2009 revised curriculum using the 8 scientific practices and their achievement standards for 9th-12th grade. The science inquiry activities and the science practices included in the 4 textbooks were 173 and 678. The science practices included in the inquiry activities of 4 textbooks included the most ‘analyzing and interpreting data.’ The ‘engaging in argument from evidence’, ‘Obtaining, Evaluating, and Communicating Information’ were less than other practices. The ‘asking questions and defining problem’ and ‘developing and using models’ were not nearly included in the 4 high school chemistry II textbooks.

Developing and Assessing a Learning Progression for the Ecosystem (생태계에 대한 학습발달과정의 개발과 평가)

  • Yeo, Chaeyeong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.29-43
    • /
    • 2016
  • There have been much efforts to reconstruct the science curriculum focusing on Disciplinary Core Ideas(DCI) in many countries such as America and Europe, the most practical effort has been to design a curriculum with learning progressions(LPs). LPs describe stepwise how students can systematically move toward the understanding of more sophisticated ideas or scientific activities and explain in succession the process of understanding the ideas while the students learn. In this study, a LP for ecosystems has been developed, and the developed LP is then evaluated accordingly. The Ecosystem is one of the DCI of the life science in Next Generation Science Standards(NGSS). The development process of the LP was set at step 4(Development, Assessment, Analysis, and Amendment), and developed through an iterative process of sequences. As a result of analyzing the developed LP, an assessment based on the LP provides reliable information to identifying student ability. This study proposes the development process of the LP and its methodological aspects to use Core Achievement Standards, Ordered Multiple-Choice items and the Rasch model. In addition, using the empirically proven LP suggests a way of strengthening curriculum linked to educational content, teaching methods and assessment. Utilizing the proposed development process in this study will be to present the standard into the direction of becoming part of the curriculum. Currently, the state of domestic research for the LP is still lacking. This study determined the development process of the LP and the need to conduct future research on the LPs.

Development of Assessment Tools for Scientifically Gifted and Talented with Lower Grades in Elementary School (초등학교 저학년 학생을 위한 종합적 과학재능 검사 도구의 개발 -수행형 검사 수행을 위한 시사점 도출-)

  • Seo, YoonKyung;Jhun, Youngseok
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.347-358
    • /
    • 2020
  • He purpose of this study is to design and apply a pilot assessment tools for scientifically gifted and talented elementary school students with lower grades. The assessment tool consists of three parts: homeroom teachers' recommendation, paper and pencil test and performance tests. The tools are verified whether they are suitable for unique characteristics of young children and enable to attract active participation. For suitability check, students' performance tests were inductively analyzed and 30 behavioral patterns were shown which were included and partially exceeded the level of lower elementary students' performance expectation in NGSS. As a result, we concluded that assessment tool developed in this study will be effective in discriminating young pupils' scientific talents. Then for participation check, we compared the number of coding references as an indicator of participation. Two cases were found that students with high interest participated passively in performance tests. We found these 'passive participants' had excessive scientific experiences and extremely narrow region of interest, during the process of complex interpretation between the results of this assessment tool and in-depth interviews with homeroom teachers. We found out in this study that newly developed tools can be used in school scene after modifying and elaboration through accumulation of more case studies.

Critical Review of 'Skills' in the 2015 Revised Science National Curriculum (2015 개정 과학과 교육과정의 '기능'에 대한 비판적 검토)

  • Kwon, Munho;Park, Jongseok
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.151-161
    • /
    • 2020
  • The 'core concepts', 'generalized knowledge', and 'skills' are newly introduced in the 'contents system' of the 2015 revised national curriculum, and the 'skills' are not clearly defined in the science curriculum. There is a problem of uniformly presenting 'skills' in all 'areas' of science subjects. In this study, it was intended that the teachers' clear understanding of the 'skills' and the philosophy of the revised curriculum would be applied to the school classrooms through the critical problem recognition and consideration of 'skills' newly introduced in the 'contents system' of the 2105 revised science curriculum. First, we reviewed 'science and engineering practice' in the NGSS, which was a reference to the introduction to the curriculum, and identified the problems of 'skills' presented in the science curriculum. It also analyzed critically by comparing 'skills' and 'practices' with other subjects and previous curriculum. Based on this critical analysis, we suggested the following. First, introduce 'skills' items that can implement scientific key competencies, and clearly define each item. Second, present 'skills' that are appropriate according to the subject, 'area', 'core concept', and grade(group) and describe in detail how to apply 'skills' and, third, present 'skills' directly in 'achievement standards'.