• Title/Summary/Keyword: NGS 분석

Search Result 112, Processing Time 0.039 seconds

Next Generation Sequencing and Bioinformatics (차세대 염기서열 분석기법과 생물정보학)

  • Kim, Ki-Bong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.357-367
    • /
    • 2015
  • With the ongoing development of next-generation sequencing (NGS) platforms and advancements in the latest bioinformatics tools at an unprecedented pace, the ultimate goal of sequencing the human genome for less than $1,000 can be feasible in the near future. The rapid technological advances in NGS have brought about increasing demands for statistical methods and bioinformatics tools for the analysis and management of NGS data. Even in the early stages of the commercial availability of NGS platforms, a large number of applications or tools already existed for analyzing, interpreting, and visualizing NGS data. However, the availability of this plethora of NGS data presents a significant challenge for storage, analyses, and data management. Intrinsically, the analysis of NGS data includes the alignment of sequence reads to a reference, base-calling, and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection, and genome browsing. While the NGS technologies have allowed a massive increase in available raw sequence data, a number of new informatics challenges and difficulties must be addressed to improve the current state and fulfill the promise of genome research. This review aims to provide an overview of major NGS technologies and bioinformatics tools for NGS data analyses.

Application of NGS Analysis for the Food Source of Bivalve (이매패류(Sinonovacula constricta) 먹이원 NGS 분석 적용에 대한 연구)

  • Heo, Yu-Ji;Jo, Hyunbin;Jung, Eunsong;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.257-264
    • /
    • 2021
  • In this study, we analyzed the food components in the release product that sampled Sinonovacula constricta from the foreshore littoral at Byeongnyang-myeon, Suncheon Bay. We used microscopy and next-generation sequencing (NGS) to evaluate the applicability of morphological and molecular methods to analyze release products. The higher species diversity observed in the NGS method is due to the different levels of species identification, as microscopy displays morphological and anatomical levels of plankton species identification in S. constrita. Moreover, NGS can identify the level of species in the organic matter by using the 18s_V9 primer.

Evaluation of Alignment Methods for Genomic Analysis in HPC Environment (HPC 환경의 대용량 유전체 분석을 위한 염기서열정렬 성능평가)

  • Lim, Myungeun;Jung, Ho-Youl;Kim, Minho;Choi, Jae-Hun;Park, Soojun;Choi, Wan;Lee, Kyu-Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • With the progress of NGS technologies, large genome data have been exploded recently. To analyze such data effectively, the assistance of HPC technique is necessary. In this paper, we organized a genome analysis pipeline to call SNP from NGS data. To organize the pipeline efficiently under HPC environment, we analyzed the CPU utilization pattern of each pipeline steps. We found that sequence alignment is computing centric and suitable for parallelization. We also analyzed the performance of parallel open source alignment tools and found that alignment method utilizing many-core processor can improve the performance of genome analysis pipeline.

ChIP-seq Library Preparation and NGS Data Analysis Using the Galaxy Platform (ChIP-seq 라이브러리 제작 및 Galaxy 플랫폼을 이용한 NGS 데이터 분석)

  • Kang, Yujin;Kang, Jin;Kim, Yea Woon;Kim, AeRi
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.410-417
    • /
    • 2021
  • Next-generation sequencing (NGS) is a high-throughput technique for sequencing large numbers of DNA fragments that are prepared from a genome. This sequencing technique has been used to elucidate whole genome sequences of living organisms and to analyze complementary DNA (cDNA) or chromatin immunoprecipitated DNA (ChIPed DNA) at the genome level. After NGS, the use of proper tools is important for processing and analyzing data with reasonable parameters. However, handling large-scale sequencing data and programing for data analysis can be difficult. The Galaxy platform, a public web service system, provides many different tools for NGS data analysis, and it allows researchers to analyze their data on a web browser with no deep knowledge about bioinformatics and/or programing. In this study, we explain the procedure for preparing chromatin immunoprecipitation-sequencing (ChIP-seq) libraries and steps for analyzing ChIP-seq data using the Galaxy platform. The data analysis steps include the NGS data upload to Galaxy, quality check of the NGS data, premapping processes, read mapping, the post-mapping process, peak-calling and visualization by window view, heatmaps, average profile, and correlation analysis. Analysis of our histone H3K4me1 ChIP-seq data in K562 cells shows that it correlates with public data. Thus, NGS data analysis using the Galaxy platform can provide an easy approach to bioinformatics.

Development of HLA-A, -B and -DR Typing Method Using Next-Generation Sequencing (차세대염기서열분석법을 이용한 HLA-A, -B 그리고 -DR 형별 분석법 개발)

  • Seo, Dong Hee;Lee, Jeong Min;Park, Mi Ok;Lee, Hyun Ju;Moon, Seo Yoon;Oh, Mijin;Kim, So Young;Lee, Sang-Heon;Hyeong, Ki-Eun;Hu, Hae-Jin;Cho, Dae-Yeon
    • The Korean Journal of Blood Transfusion
    • /
    • v.29 no.3
    • /
    • pp.310-319
    • /
    • 2018
  • Background: Research on next-generation sequencing (NGS)-based HLA typing is active. To resolve the phase ambiguity and long turn-around-time of conventional high resolution HLA typing, this study developed a NGS-based high resolution HLA typing method that can handle large-scale samples within an efficient testing time. Methods: For HLA NGS, the condition of nucleic acid extraction, library construction, PCR mechanism, and HLA typing with bioinformatics were developed. To confirm the accuracy of the NGS-based HLA typing method, the results of 192 samples HLA typed by SSOP and 28 samples typed by SBT compared to NGS-based HLA-A, -B and -DR typing. Results: DNA library construction through two-step PCR, NGS sequencing with MiSeq (Illumina Inc., San Diego, USA), and the data analysis platform were established. NGS-based HLA typing results were compatible with known HLA types from 220 blood samples. Conclusion: The NSG-based HLA typing method could handle large volume samples with high-throughput. Therefore, it would be useful for HLA typing of bone marrow donation volunteers.

Comparison of Hsp90 and CYP1A Expression Patterns by Water Temperature Stress in Atlantic Salmon (Salmo salar) (대서양 연어(Salmo salar)의 수온 스트레스에 의한 Hsp90 및 CYP1A 발현 양상 비교)

  • Kang, Han Seung;Song, Jae-Hee;Kang, Hee Woong
    • Journal of Marine Life Science
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Variations in water temperature are known to affect almost every part of fish physiology. The rise in water temperature due to climate change can physically damage fish. This study was conducted to evaluate the health status of the Atlantic salmon (Salmo salar) at high water temperature (20℃) than the optimum water temperature (15℃). Liver tissue exerts important metabolic functions in thermal adaptation. Therefore, liver tissue was used in this study. The evaluation method is to develop the biomarker gene using NGS RNAseq analysis and to examine the expression pattern using RT-qPCR analysis. The NGS RNAseq analysis revealed 1,366 differentially expressed genes, among which 880 genes were increase expressed and 486 genes were decrease expressed. The biomarker genes are such as heat shock protein 90 alpha (Hsp90α), heat shock protein 90 beta (Hsp90β) and cytochrome P450 1A (CYP1A). The selected genes are sensitive to changes in water temperature through NGS RNAseq analysis. Expression patterns of these genes through RT-qPCR were similar to those of NGS RNAseq analysis. The results of this study can be applied to other fish species and it is considered to be useful industrially.

De novo assembly of a large volume of genome using NGS data (NGS 데이터를 이용한 대용량 게놈의 디노버 어셈블리)

  • Won, Jung-Im;Hong, Sang-Kyoon;Kong, Jin-Hwa;Huh, Sun;Yoon, Jee-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.25-27
    • /
    • 2012
  • 디노버 어셈블리는 레퍼런스 시퀀스 없이 리드의 염기 서열 정보를 이용하여 원래의 전체 시퀀스(original sequence)로 추정되는 시퀀스로 리드들을 재구성하는 방식이다. 최근의 NGS(Next Generation Sequencing) 기술은 대용량 리드를 훨씬 쉽게 저비용으로 생성할 수 있다는 장점이 있어, 이를 이용한 많은 연구가 이루어지고 있다. 그러나 NGS 리드 데이터를 이용한 디노버 어셈블리에 관한 연구는 국내외적으로 매우 미흡한 실정이다. 그 이유는 NGS 리드 데이터를 이용하여 디노버 어셈블리를 수행하는 경우 대용량 데이터, 복잡한 데이터 구조 및 처리 과정 등으로 인하여 매우 많은 시간과 공간이 소요될 뿐만 아니라 아직까지 다양한 분석 툴과 노하우 등이 충분히 개발되어 있지 않기 때문이다. 본 연구에서는 NGS 리드 데이터를 이용한 어셈블리의 실효성과 정확성을 검증한다. 또한 디노버 어셈블리의 처리 시간 및 공간 오버헤드를 해결하기 위하여 유사 종과의 리드 정렬을 활용하는 방안을 제안한다.

Analyzing Vomit of Platalea minor (Black-faced Spoonbill) to Identify Food Components using Next-Generation Sequencing and Microscopy (차세대염기서열 및 현미경 분석을 통한 저어새의 토사물 내 먹이생물 분석)

  • Kim, Hyun-Jung;Lee, Taek-Kyun;Jung, Seung Won;Kwon, In-Ki;Yoo, Jae-Won
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • We sampled vomit of black-faced spoonbills(Platalea minor) during the brood-rearing season (from June 2011 to June 2014) at the Namdong reservoir in Incheon and analyzed the food components in the vomit using microscopy and next-generation sequencing (NGS). Microscopic observations primarily helped in identifying osteichthyes (bony fishes), crustaceans, and polychaetes. In particular, species belonging to the families Mugilidae and Gobiidae among the fish, and Macrophthalmus japonicas among the crustaceans, were observed at high frequency. Results of NGS analysis revealed the predominant presence of bony fish (42.58% of total reads) and crustaceans (40.75% of total reads), whereas others, such as polychaetes (12.66%), insects (0.24%), and unidentified species (3.78%), occurred in lower proportions. At the species level, results of NGS analysis revealed that Macrophthalmus abbreviates and Macrobrachium sp. among the crustaceans, and Acanthogobius hasta, Tridentiger obscurus, and Pterogobius zacalles among the bony fish, made up a high proportion of the total reads. These food species are frequently found at tidal flats in the Songdo and Sihwa lakes, emphasizing the importance of these areas as potential feeding sites of the black-faced spoonbill. Feed composition of the black-faced spoonbill, as evaluated by analyzing its vomit, differed when the evaluations were done by microscopic observation or by NGS analysis. Evaluation by microscopic observation is difficult and not error free, owing to the degradation of the samples to be analyzed; however, NGS analysis is more accurate, because it makes use of genetic information. Therefore, accurately analyzing food components from morphologically indistinguishable samples is possible by using genetic analysis.

Effect of Water Temperature on the Expression of Stress Related Genes in Atlantic Salmon (Salmo salar) Fry (수온이 대서양 연어(Salmo salar) 치어의 체내 스트레스 관련 유전자 발현에 미치는 영향)

  • Kang, Hee Woong;Kim, Kwang Il;Lim, Hyun Jeong;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • The warming of water as a result of climate change affects fish habitat. Variations in water temperature affect fish physiology almost totally. The rise in water temperature due to climate change leads to hypoxia following decreased oxygen solubility and decreased binding capacity of oxygen-carrying hemoglobin. This study was conducted to evaluate the health status of Atlantic salmon (Salmo salar) fry at elevated water temperatures($20^{\circ}C$) compared with optimum water temperature ($15^{\circ}C$). The method facilitated the detection of biomarker genes using NGS RNAseq analysis and evaluation of their expression pattern using RT-qPCR analysis. The biomarker genes included interferon alpha-inducible protein 27-like protein 2A transcript variant X3, protein L-Myc-1b-like, placenta growth factor-like transcript variant X1, fibroblast growth factor receptor-like 1 transcript variant X1, transferrin, intelectin, thioredoxin-like, c-type lectin lectoxin-Thr1-like, ladderlectin-like and calponin-1. The selected biomarker genes were sensitive to changes in water temperature based on NGS RNAseq analysis. The expression patterns of these genes based on RT-qPCR were similar to those of NGS RNAseq analysis.

Current Status and Prospect of Wheat Functional Genomics using Next Generation Sequencing (차세대 염기서열분석을 통한 밀 기능유전체 연구의 현황과 전망)

  • Choi, Changhyun;Yoon, Young-Mi;Son, Jae-Han;Cho, Seong-Woo;Kang, Chon-Sik
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.364-377
    • /
    • 2018
  • Hexaploid wheat (common wheat/bread wheat) is one of the most important cereal crops in the world and a model for research of an allopolyploid plant with a large, highly repetitive genome. In the heritability of agronomic traits, variation in gene presence/absence plays an important role. However, there have been relatively few studies on the variation in gene presence/absence in crop species, including common wheat. Recently, a reference genome sequence of common wheat has been fully annotated and published. In addition, advanced next-generation sequencing (NGS) technology provides high quality genome sequences with continually decreasing NGS prices, thereby dawning full-scale wheat functional genomic studies in other crops as well as common wheat, in spite of their large and complex genomes. In this review, we provide information about the available tools and methodologies for wheat functional genomics research supported by NGS technology. The use of the NGS and functional genomics technology is expected to be a powerful strategy to select elite lines for a number of germplasms.