• Title/Summary/Keyword: NGII 상시관측소

Search Result 13, Processing Time 0.021 seconds

Avaliable analysis of precise positioning using the LX-PPS GNSS permanent stations (LX-PPS GNSS 상시관측소의 정밀측위 활용 가능성 분석)

  • Ha, Jihyun;Park, Kwan-Dong;Kim, Hye-In
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.23-38
    • /
    • 2021
  • In this paper, we analyzed the possibility of utilizing LX-PPS GNSS permanent stations whose antennas are installed on the building rooftop for the purpose of high-precision GNSS positioning services. We picked 15 pairs of adjacent GNSS permanent stations operated by LX-PPS and NGII, and then produced 3-year-long time series using the high-precision data processing software called GIPSY. Patterns and trends of position estimates were compared and analyzed. Horizontal and vertical deviations including the linear velocities coincide with the well-known crustal deformation rates of the Korean peninsula. We also observed almost the same annual or seasonal patterns from those nearby sites. After detrending the linear velocity, the amplitude and phase of annual signals almost perfectly match each other within the baseline length of 2 km. By subtracting seasonal signals, the RMS and standard deviations in LX-PPS PPGR with respect to NGII KANR are about 1, 2, and 5 mm in the north-south, east-west, and vertical directions, respectively. From this analysis it can be concluded that the rooftop-installed LX-PPS sites show similar level of stability and positioning performance comparable to those ground-mounted NGII stations.

Decision Of EO Parameters Based On Direct Georeferencing Using SmartBase (SmartBase를 활용한 Direct Georeferencing 기반의 외부표정요소 결정)

  • Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • Recently, it is a pretty well known way to compute GPS/INS using Continuously Operating Reference Station (CORS) and Network-based RTK for obtaining Exterior Orientation (EO) parameters of aerial photogrammetry. In this study, it is way to compute Exterior Orientation (EO) parameters using ground base stations, using Continuously Operating Reference Station (CORS) broadcast orbits and International GNSS Service (IGS) rapid orbits. And the residuals of Exterior Orientation (EO) parameters were computed based on the results of ground base station. As a result, the case of using SmartBase to obtain Exterior Orientation (EO) parameters was showed the high accuracy of X, Y, K more than using Continuously Operating Reference Station (CORS) of National Geographic Information Institute (NGII). Also, distance and direction of Continuously Operating Reference Station (CORS) of National Geographic Information Institute (NGII) from ground base station affected Exterior Orientation (EO) parameters. And different forms of residuals were shown according to the aerial photo courses.

A Study on Improvement of Satellite Surveying Infrastructure through Analysis of Operation Status of GNSS CORS (GNSS 상시관측소 운영 현황 분석을 통한 위성측량 인프라 개선방안 연구)

  • Park, Joon Kyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.933-940
    • /
    • 2017
  • The modern society is changing paradigm by the 4th industrial revolution. In these changes, the importance of geospatial information leading to the fusion and connection of persons and objects is increasing day by day. GNSS CORS(Continuously Operating Reference Station) plays a pivotal role in the geospatial information by providing basic data for surveying control points, mapping, navigation, geophysical research, and so on. On the other hand, the satellite surveying technologies are developing rapidly and it is necessary to investigate the status of the satellite surveying environment and search for future directions. In this study, the environment related to satellite survey by operation status of domestic and overseas CORS(Continuously Operating Reference Station) was tried to analyze. Through the research, The operation status of NGII and IGS CORS were presented. It was found that the availability ratio of multiple satellites to the CORS of NGII are lower than that of IGS CORS. Considering the improvement of positioning performance by using multiple GNSS, it is necessary to use multi-satellites in the future.

Accuracy Analysis of Online GPS Data Processing Service (온라인 GPS 자료처리 서비스의 정확도분석)

  • Kong, Joon-Mook;Park, Joon-Kyu;Lee, Choi-Gu;Lee, Young-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Currently, GPS data process software appears different results that according to user's skills or software. Also, lots of time and efforts are necessary for using GPS data process software to general user, not a specialist On the other band, on-line GPS data process service have a merit that can cony out GPS data process without technical efforts and time. In this study, permanent GPS site's observation data of NGII(National Geographic Information Institute) was processed by on-line GPS data process service, and utilization assessment of on-line GPS data process service was performed by comparing this result with notified coordinates by the NGII in order to analyze positional accuracy. 10 permanent GPS sites of NGII including Suwon which is registered in IGS(International GNSS Service) were selected and these GPS observation data was processed by AUSPOS and CSRS-PPP.

Positional Accuracy Analysis of Permanent GPS Sites Using Precise Point Positioning (정밀절대측위를 이용한 상시관측소 위치정확도 분석)

  • Kang, Joon-Mook;Lee, Yong-Wook;Kim, Min-Gyu;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.529-536
    • /
    • 2008
  • Researches about 3-D Positioning system using GPS were carried out many-sided by national organs, laboratories, the worlds of science. And most of researches were development of relative positioning algorithm and its applications. Relative positioning has a merit, which can eliminate error in received signals. But its error increase due to distance of baseline. GPS absolute positioning is a method that decides the position independently by the signals from the GPS satellites which are received by a receiver at a certain position. And it is necessary to correct various kinds of error(clock error, effect of ionosphere and troposphere, multi-path etc.). In this study, results of PPP(Precise Point Positioning) used Bernese GPS software was compared with notified coordinates by the NGII(National Geographic Information Institute) in order to analyze the positional accuracy of permanent GPS sites. And the results were compared with results of AUSPOS - Online GPS Processing Service for comparison with relative positioning.

Analysis of Crustal Deformation on the Korea Peninsula after the 2011 Tohoku Earthquake (한반도 지각의 2011 도호쿠 대지진 영향 분석)

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.87-96
    • /
    • 2012
  • The U.S. Geological Survey (USGS) announced that an earthquake of 9.0 magnitude had occurred near the east coast of Japan on March 11, 2011, resulting in a displacement of the crust of about 2.4 meters. The Korean peninsula is located on the Eurasian tectonic plate that stretches out to Japan; therefore, there is a high possibility of being affected by an earthquake. The Korean GPS CORS network operated by the National Geographic Information Institute (NGII) was processed for ten days before and after the earthquake. Both static and kinematic baseline processing were tested for the determination of crustal deformation. The static baseline processing was performed in two scenarios: 1) fixing three IGS stations in China, Mongolia and Russia; 2) fixing SUWN, one of the CORS networks in Korea, in order to effectively verify crustal deformation. All data processing was carried out using Bernese V5.0. The test results show that most of the parts of the Korean peninsula have moved to the east, ranging 1.2 to 5.6 cm, compared to the final solution of the day before the earthquake. The stations, such as DOKD and ULLE that are established on the islands closer to the epicenter, have clearly moved the largest amounts. Furthermore, the station CHJU, located on the southwestern part of Korea, presents relatively small changes. The relative positioning between CORS confirms the fact that there were internal distortions of the Korean peninsula to some extent. In addition, the 30-second interval kinematic processing of CORS data gives an indication of earthquake signals with some delays depending on the distance from the epicenter.

Accuracy Evaluation of the Height Determined by Network-RTK VRS Positioning (네트워크 RTK VRS 측량에 의한 표고정확도 평가)

  • Lee, Suk Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • Network-RTK GPS positioning technique based on national CORS(Continuous Operating Reference Station) and wireless internet access as like VRS and FKP was developed to overcome the limitations of traditional RTK technique. In Korea, NGII(National Geographic Information Institute) provides network-RTK service based on 51 CORS and mobile internet network. The purpose of this study is the accuracy evaluation of the height determined by GPS VRS technique based on network-RTK, So, in this study GPS VRS positioning was accomplished through 1st level BM line located at Sancheong~Jinju and $2^{nd}$ level BM line located at Geochang~Sancheong and the average error of the each BM line was calculated as 2.15cm and 1.80cm respectively. This result shows that GPS VRS height positioning can be used in $3^{rd}$ and 4th public BM leveling and also work regulation is needed to apply the GPS VRS height positioning.

Analysis of Network-RTK(VRS) Positioning Accuracy for Surveying Public Control Point (공공기준점 측량에 적용을 위한 VRS(가상기준점) 방식의 Network-RTK 정확도 분석)

  • Han, Joong-Hee;Kwon, Jay-Hyoun;Hong, Chang-Ki
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.13-20
    • /
    • 2010
  • Currently, NGII(National Geographic Information Institute) provides VRS(Virtual Reference System) service using 44 CORS(Continuously Operating Reference Stations). Since the VRS provides high-precision coordinate in a short time, the users and applications are expected to be rapidly increasing. The accuracy analysis on the VRS service, however, was not sufficiently performed yet. Therefore, in this study, the VRS data is acquired from various circumstances and its accuracy is analyzed. According to analysis, it was concluded that the VRS could be applied to public control point survey. Furthermore, it was found that the PQ(Position Quality) which represents variance of estimated coordinates rather than GDOP(Geometric Dilution of Precision) is more relevant as a factor to determine the accuracy of coordinates. Based on the analysis of data from four manufacturers (TRIMBLE, MAGELLAN, LECIA, TOPCON), it was confirmed that the standard deviations better than 3cm. Therefore, VRS Survey apply to public control point survey.

Comparative Analysis of Annual Tropospheric Delay by Season and Weather (계절과 날씨에 따른 연간 대류권 지연오차량 변화)

  • Lim, Soo-Hyeon;Kim, Ji-Won;Park, Jeong-Eun;Bae, Tae-Suk;Hong, Sungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this study, we estimated the tropospheric delay of GNSS (Global Navigation Satellite System) signals during passing through the atmosphere in relation to weather and seasonal factors. For this purpose, we chose four CORS (Continuously Operating Reference Station) stations from inland (CCHJ and PYCH) and on the coast (GEOM and CHJU). A total of 48 days for each station (one set of data for each week) were downloaded from the NGII (National Geographic Information Institute) and processed it using the scientific GNSS software. The average tropospheric delays in winter are less than 2,400 mm, which is about 200 mm less than those in summer. The estimated tropospheric delay shows a similar pattern from all stations except the absolute bias in magnitude, while a large delay was observed for the station located on the coast. In addition, the delay during the day was relatively stable in winter, and the average tropospheric delay was strongly related to the orthometric height. The inland stations have tropospheric delays by the precipitation rather than humidity due to dry weather and difference in temperature. On the contrary, it was primarily caused by the humidity on the sea. The correlation between temperature and water vapor pressure is 0.9 or larger for all stations, and the tropospheric delay showed a high linear relationship with temperature. It is necessary to analyze the GNSS data with higher temporal resolution (e.g. all RINEX data of the year) to improve the stability and reliability of the correlation results.

Development of LX GNSS On-line Data Processing System Based on the GIPSY-OASIS (GIPSY-OASIS 기반 LX GNSS 온라인 자료처리 시스템 개발)

  • Kim, Hyun-Ho;Ha, Ji-Hyun;Tcha, Dek-Kie
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.555-561
    • /
    • 2014
  • Data processing service via internet help user to get the GNSS data processing result more precise and easily. Thus, online data process system is operated and developed by various research groups and national. But this service is difficult to use in domestic cadastral survey. In this study, we developed the online data processing system for a domestic cadastral survey. This is calculated coordinate using NGII CORS(SUWN) fiducially. And use PPP technique by GIPSY-OASIS. If user choose the observation data which want to calculate the coordinate, then is uploaded to GIPSY-OASIS server through FTP. After upload is complete, server automatically calculate coordinate, and send the report about result using e-mail. And it takes 2 minutes runtime on the basis of the 3 sessions. To verify the result, we used the data on SOUL, JUNJ as compared with notified-coordinate from NGII. As a result, got the difference for east-west 1.4 cm, north-south -1.0 cm, vertical 0.5 cm.