• Title/Summary/Keyword: NF-${\kappa}B$ activation

Search Result 829, Processing Time 0.036 seconds

Effects of a Tetramethoxyhydroxyflavone on the Expression of Inflammatory Mediators in LPS-Treated Human Synovial Fibroblast and Macrophage Cells

  • Yoon, Do-Young;Cho, Min-Chul;Kim, Jung-Hee;Kim, Eun-Jin;Kang, Jeong-Woo;Seo, Eun-Hee;Shim, Jung-Hyun;Kim, Soo-Hyun;Lee, Hee-Gu;Oh, Goo-Taeg;Hong, Jin-Tae;Park, Joo-Won;Kim, Jong-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.686-694
    • /
    • 2008
  • The inhibitory effects of 5,6,3',5'-tetramethoxy 7,4'-hydroxyflavone (labeled as p7F) were elucidated on the productions of proinflammatory cytokines as well as inflammatory mediators in human synovial fibroblasts and macrophage cells. p7F inhibited IL-1${\beta}$ or TNF-${\alpha}$ induced expressions of inflammatory mediators (ICAM-1, COX-2, and iNOS). p7F also inhibited LPS-induced productions of nitric oxide and prostaglandin $E_2$ in RAW 264.7 cells. In order to investigate whether p7F would inhibit IL-1 signaling, p7F was added to the D10S Th2 cell line (which is responsive to only IL-1${\beta}$ and thus proliferates), revealing that p7F inhibited IL-1${\beta}$-induced proliferation of D10S Th2 cells in a dose-response manner. A flow cytometric analysis revealed that p7F reduced the intracellular level of free radical oxygen species in RAW 264.7 cells treated with hydrogen peroxide. p7F inhibited IkB degradation and NF-${\kappa}$B activation in macrophage cells treated with LPS, supporting that p7F could inhibit signaling mediated via toll-like receptor. Taken together, p7F has inhibitory effects on LPS-induced productions of inflammatory mediators on human synovial fibroblasts and macrophage cells and thus has the potential to be an anti-inflammatory agent for inhibiting inflammatory responses.

Upregulation of MMP is Mediated by MEK1 Activation During Differentiation of Monocyte into Macrophage

  • Lim, Jae-Won;Cho, Yoon-Jung;Lee, Dong-Hyun;Jung, Byung-Chul;Kang, Han-Sol;Kim, Tack-Joong;Rhee, Ki-Jong;Kim, Tae-Ue;Kim, Yoon-Suk
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.104-111
    • /
    • 2012
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases which degrade extracellular matrix (ECM) during embryogenesis, wound healing, and tissue remodeling. Dysregulation of MMP activity is also associated with various pathological inflammatory conditions. In this study, we examined the expression pattern of MMPs during PMA-induced differentiation of THP-1 monocytic cells into macrophages. We found that MMP1, MMP8, MMP3, MMP10, MMP12, MMP19, MMP9, and MMP7 were upregulated during differentiation whereas MMP2 remained unchanged. Expression of MMPs increased in a time-dependent manner; MMP1, MMP8, MMP3, MMP10, and MMP12 increased beginning at 60 hr post PMA treatment whereas MMP19, MMP9, and MMP7 increased beginning at 24 hr post PMA treatment. To identify signal transduction pathways involved in PMA-induced upregulation of MMPs, we treated PMA-differentiated THP-1 cells with specific inhibitors for PKC, MEK1, NF-${\kappa}B$, PI3K, p38 MAPK and PLC. We found that inhibition of the MEK1 pathway blocked PMA-induced upregulation of all MMPs to varying degrees except for MMP-2. In addition, expression of select MMPs was inhibited by PI3K, p38 MAPK and PLC inhibitors. In conclusion, we show that of the MMPs examined, most MMPs were up-regulated during differentiation of monocyte into macrophage via the MEK1 pathway. These results provide basic information for studying MMPs expression during macrophage differentiation.

Lactobacillus casei Secreting ${\alpha}$-MSH Induces the Therapeutic Effect on DSS-Induced Acute Colitis in Balb/c Mice

  • Yoon, Sun-Woo;Lee, Chul-Ho;Kim, Jeong-Yoon;Kim, Jie-Youn;Sung, Moon-Hee;Poo, Har-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1975-1983
    • /
    • 2008
  • The neuropeptide ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) has anti-inflammatory property by down regulating the expressions of proinflammatory cytokines. Because ${\alpha}$-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes ${\alpha}$-MSH (L. casei-${\alpha}$-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the ${\alpha}$-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and ${\alpha}$-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-${\alpha}$-MSH on the colitis, L. casei or L. casei-${\alpha}$-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-${\alpha}$-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: $14.45{\pm}0.2\;g$; L. casei-${\alpha}$-MSH: $18.2{\pm}0.12\;g$), colitis score (DSS alone: $3.6{\pm}0.4$; L. casei-${\alpha}$-MSH: $1.4{\pm}0.6$), MPO activity (DSS alone: $42.7{\pm}4.5\;U/g$; L. casei-${\alpha}$-MSH: $10.25{\pm}0.5\;U/g$), survival rate, and histological damage compared with the DSS alone mice. L. casei-${\alpha}$-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and $NF-{\kappa}B$ activation. The ${\alpha}$-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

Agastache rugosa Leaf Extract Inhibits the iNOS Expression in ROS 17/2.8 Cells Activated with TNF-$\alpha$ and IL-$\beta$

  • Oh Hwa Min;Kang Young Jin;Kim Sun Hee;Lee Young Soo;Park Min Kyu;Heo Ja Myung;Sun Jin Ji;Kim Hyo Jung;Kang Eun Sil;Kim Hye Jung;Sea Han Geuk;Lee Jae Heun;YunChoi Hye Sook
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.305-310
    • /
    • 2005
  • It has been suggested that nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) may act as a mediator of cytokine-induced effects on bone turn-over. NO is also recognized as an important factor in bone remodeling, i.e., participating in osteoblast apoptosis in an arthritic joint. The components of Agastache rugosa are known to have many pharmacological activities. In the present study, we investigated the effects of Agastache rugosa leaf extract (ELAR) on NO production and the iNOS expression in ROS 17/2.8 cells activated by a mixture of inflammatory cytokines including TNF-$alpha$ and IL-1$\beta$. A preincubation with ELAR significantly and concentration-dependently reduced the expression of iNOS protein in ROS 17/2.8 cells activated with the cytokine mixture. Consequently, the NO production was also significantly reduced by ELAR with an IC$_{50}$ of 0.75 mg/mL. The inhibitory mechanism of iNOS induction by ELAR prevented the activation and translocation of NF-$\kappa$B (p65) to the nucleus from the cytosol fraction. Furthermore, ELAR concentration-dependently reduced the cellular toxicity induced by sodium nitroprusside, an NO-donor. These results suggest that ELAR may be beneficial in NO-mediated inflammatory conditions such as osteoporosis.

$TNF{\alpha}$ Increases the Expression of ${\beta}2$ Adrenergic Receptors in Osteoblasts

  • Baek, Kyung-Hwa;Lee, Hye-Lim;Hwang, Hyo-Rin;Park, Hyun-Jung;Kwon, A-Rang;Qadir, Abdul S.;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.173-178
    • /
    • 2011
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional cytokine that is elevated in inflammatory diseases such as atherosclerosis, diabetes and rheumatoid arthritis. Recent evidence has suggested that ${\beta}2$ adrenergic receptor (${\beta}2AR$) activation in osteoblasts suppresses osteogenic activity. In the present study, we explored whether $TNF{\alpha}$ modulates ${\beta}AR$ expression in osteoblastic cells and whether this regulation is associated with the inhibition of osteoblast differentiation by $TNF{\alpha}$. In the experiments, we used C2C12 cells, MC3T3-E1 cells and primary cultured mouse bone marrow stromal cells. Among the three subtypes of ${\beta}AR$, ${\beta}2$ and ${\beta}3AR$ were found in our analysis to be upregulated by $TNF{\alpha}$. Moreover, isoproterenol-induced cAMP production was observed to be significantly enhanced in $TNF{\alpha}$-primed C2C12 cells, indicating that $TNF{\alpha}$ enhances ${\beta}2AR$ signaling in osteoblasts. $TNF{\alpha}$ was further found in C2C12 cells to suppress bone morphogenetic protein 2-induced alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes including Runx2, ALP and osteocalcin. Propranolol, a ${\beta}2AR$ antagonist, attenuated this $TNF{\alpha}$ suppression of osteogenic differentiation. $TNF{\alpha}$ increased the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL), an essential osteoclastogenic factor, in C2C12 cells which was again blocked by propranolol. In summary, our data show that $TNF{\alpha}$ increases ${\beta}2AR$ expression in osteoblasts and that a blockade of ${\beta}2AR$ attenuates the suppression of osteogenic differentiation and stimulation of RANKL expression by $TNF{\alpha}$. These findings imply that a crosstalk between $TNF{\alpha}$ and ${\beta}2AR$ signaling pathways might occur in osteoblasts to modulate their function.

Immunotoxicological Effects of Aripiprazole: In vivo and In vitro Studies

  • Baek, Kwang-Soo;Ahn, Shinbyoung;Lee, Jaehwi;Kim, Ji Hye;Kim, Han Gyung;Kim, Eunji;Kim, Jun Ho;Sung, Nak Yoon;Yang, Sungjae;Kim, Mi Seon;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.365-372
    • /
    • 2015
  • Aripiprazole (ARI) is a commonly prescribed medication used to treat schizophrenia and bipolar disorder. To date, there have been no studies regarding the molecular pathological and immunotoxicological profiling of aripiprazole. Thus, in the present study, we prepared two different formulas of aripiprazole [Free base crystal of aripiprazole (ARPGCB) and cocrystal of aripiprazole (GCB3004)], and explored their effects on the patterns of survival and apoptosis-regulatory proteins under acute toxicity and cytotoxicity test conditions. Furthermore, we also evaluated the modulatory activity of the different formulations on the immunological responses in macrophages primed by various stimulators such as lipopolysaccharide (LPS), pam3CSK, and poly(I:C) via toll-like receptor 4 (TLR4), TLR2, and TLR3 pathways, respectively. In liver, both ARPGCB and GCB3004 produced similar toxicity profiles. In particular, these two formulas exhibited similar phospho-protein profiling of p65/nuclear factor $(NF)-{\kappa}B$, c-Jun/activator protein (AP)-1, ERK, JNK, p38, caspase 3, and bcl-2 in brain. In contrast, the patterns of these phospho-proteins were variable in other tissues. Moreover, these two formulas did not exhibit any cytotoxicity in C6 glioma cells. Finally, the two formulations at available in vivo concentrations did not block nitric oxide (NO) production from activated macrophage-like RAW264.7 cells stimulated with LPS, pam3CSK, or poly(I:C), nor did they alter the morphological changes of the activated macrophages. Taken together, our present work, as a comparative study of two different formulas of aripiprazole, suggests that these two formulas can be used to achieve similar functional activation of brain proteins related to cell survival and apoptosis and immunotoxicological activities of macrophages.

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao;Wan, Yingchun;Sun, Lijuan;Tao, Shoujun;Chen, Peng;Liu, Caihua;Wang, Ke;Zhou, Changyu;Zhao, Guoqing
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.414-422
    • /
    • 2019
  • There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

Anti-inflammatory Effect of Flavonoids Kaempferol and Biochanin A-enriched Extract of Barnyard Millet (Echinochloa crus-galli var. frumentacea) Grains in LPS-stimulated RAW264.7 Cells (마우스 대식 세포주 RAW264.7에 있어서 LPS처리에 의해 유도되는 염증반응에 대한 식용피(Echinochloa crus-galli var. frumentacea)의 저해효과)

  • Lee, Ji Young;Jun, Do Youn;Yoon, Young Ho;Ko, Jee Youn;Woo, Koan Sik;Woo, Mi Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1157-1167
    • /
    • 2014
  • In order to compare the anti-inflammatory effects of five selected cereal grains-proso millet, hwanggeumchal sorghum, foxtail millet, barnyard millet, and adlay-the inhibitory activities of 80% ethanol (EtOH) extracts obtained from the individual grains on lipopolysaccharide (LPS)-induced nitric oxide (NO) generation were investigated in RAW264.7 cells. The EtOH extract of barnyard millet (Echinochloa crus-galli var. frumentacea) grains exhibited more potent anti-inflammatory activity than that of the other grains. When the EtOH extract of barnyard millet grains was sequentially fractionated with n-hexane, methylene chloride (MC), ethyl acetate (EtOAc), and n-butanol, the majority of the anti-inflammatory activity was detected in the MC fraction, followed by the EtOAc fraction. Pretreatment with the MC fraction caused downregulation of the expression levels of iNOS- and COX-2-specific transcripts and proteins, as well as proinflammatory cytokine gene transcripts (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) in LPS-stimulated RAW264.7 cells. Additionally, the MC fraction could suppress not only the LPS-induced nuclear translocation of cytosolic NF-kB, but also the LPS-induced activation of MAPKs, such as ERK, JNK, and p38MAPK. Further analysis of the MC fraction by HPLC identified kaempferol, biochanin A, and formononetin as the major phenolic components. Both kaempferol and biochanin A, but not formononetin, could exert anti-inflammatory effect at the same concentrations as those of the MC fraction. Consequently, these results indicate that kaempferol and biochanin A are among the most effective anti-inflammatory phenolic components in barnyard millet grains. This finding suggests that barnyard millet grains and the MC extract enriched in kaempferol and biochanin A could be beneficial functional food sources that have an anti-inflammatory effect.

Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells (정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구)

  • Oh, Myung-Ju;Kim, Ji-Hyun;Jhun, Byung Hak
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1383-1391
    • /
    • 2016
  • Anti-estrogen drugs such as tamoxifen have been used for treating patients with ER-positive, early breast cancer. However, resistance to anti-estrogen treatment is inevitable in most patients. Breast cancer anti-estrogen resistance-3 (BCAR3) has been identified as the protein responsible for the induction of tamoxifen resistance in estrogen-dependent human breast cancer. We have previously reported that BCAR3 regulates the cell cycle progression and the signaling pathway of EGF and insulin leading to DNA synthesis. In this study, we investigated the functional role of BCAR3 in regulating c-Jun transcription in non-tumorigenic human breast epithelial MCF-12A cells. A transient transfection of BCAR3 increased both the mRNA and protein of c-Jun expression, and stable expression of BCAR3 increased c-Jun protein expression. The overexpression of BCAR3 directly activated the promoter of c-jun, AP-1, and SRE but not that of $NF-{\kappa}B$. Furthermore, single-cell microinjection of BCAR3 expression plasmid in the cell cycle-arrested MCF-12A cells induced c-Jun protein expression, and co-injection of dominant negative mutants of Ras, Rac, and Rho suppressed the transcriptional activity of c-Jun in the presence of BCAR3. Furthermore, stable expression of BCAR3 increased the proliferation of MCF-12A cells. The microinjection of inhibitory materials such as anti-BCAR3 antibody and siRNA BCAR3 inhibited EGF-induced c-Jun expression but did not affect IGF-1 induced upregulation of c-Jun. Taken together, we propose that BCAR3 plays a crucial role in c-Jun protein expression and cell proliferation and that small GTPases (e.g., Ras, Rac, and Rho) are required for the BCAR3-mediated activation of c-Jun expression.