• Title/Summary/Keyword: NF-$\kappa$B

Search Result 1,691, Processing Time 0.026 seconds

NF-${\kappa}B$ Activation and cIAP Expression in Radiation-induced Cell Death of A549 Lung Cancer Cells (A549 폐암세포주의 방사선-유도성 세포사에서 NF-${\kappa}B$ 활성화 및 cIAP 발현)

  • Lee, Kye Young;Kwak, Shang-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.488-498
    • /
    • 2003
  • Background : Activation of the transcription factor NF-${\kappa}B$ has been shown to protect cells from tumor necrosis factor-alpha, chemotherapy, and radiation-induced apoptosis. NF-${\kappa}B$-dependent cIAP expression is a major antiapoptotic mechanism for that. NF-${\kappa}B$ activation and cIAP expression in A549 lung cancer cells which is relatively resistant to radiation-induced cell death were investigated for the mechanism of radioresistance. Materials and methods : We used A549 lung cancer cells and Clinac 1800C linear accelerator for radiation. Cell viability test was done by MTT assay. NF-${\kappa}B$ activation was tested by luciferase reporter gene assay, Western blot for $I{\kappa}B{\alpha}$ degradation, and electromobility shift assay. For blocking ${\kappa}B$, MG132 and transfection of $I{\kappa}B{\alpha}$-superrepressor plasmid construct were used. cIAP expression was analyzed by RT-PCR and cIAP2 promoter activity was performed using luciferase assay system. Results : MTT assay showed that cytotoxicity even 48 hr after radiation in A549 cells were less than 20%. Luciferas assay demonstrated weak NF-${\kappa}B$ activation of $1.6{\pm}0.2$ fold compared to PMA-induced $3.4{\pm}0.9$ fold. Radiation-induced $I{\kappa}B{\alpha}$ degradation was observed in Western blot and NF-${\kappa}B$ DNA binding was confirmed by EMSA. However, blocking NF-${\kappa}B$ using MG132 and $I{\kappa}B{\alpha}$-superrepressor transfection did not show any sensitizing effect for radiation-induced cell death. The result of RT-PCR for cIAP1 & 2 expression was negative induction while TNF-${\alpha}$ showed strong expression for cIAP1 & 2. The cIAP2 promoter activity also did not show any change compared to positive control with TNF-${\alpha}$. Conclusion : We conclude that activation of NF-${\kappa}B$ does not determine the intrinsic radiosensitivity of cancer cells, at least for the cell lines tested in this study.

ZAS3 represses NFκB-dependent transcription by direct competition for DNA binding

  • Hong, Joung-Woo;Wu, Lai-Chu
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.807-812
    • /
    • 2010
  • $NF{\kappa}B$ and ZAS3 are transcription factors that control important cellular processes including immunity, cell survival and apoptosis. Although both proteins bind the ${\kappa}B$-motif, they produce opposite physiological consequences; $NF{\kappa}B$ activates transcription, promotes cell growth and is often found to be constitutively expressed in cancer cells, while ZAS3 generally represses transcription, inhibits cell proliferation and is downregulated in some cancers. Here, we show that ZAS3 inhibits $NF{\kappa}B$-dependent transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Transient transfection studies show that N-terminal 645 amino acids is sufficient to repress transcription activated by $NF{\kappa}B$, and that the identical region also possesses intrinsic repression activity to inhibit basal transcription from a promoter. Finally, in vitro DNA-protein interaction analysis shows that ZAS3 is able to displace $NF{\kappa}B$ by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. It is conceivable that ZAS3 has therapeutic potential for controlling aberrant activation of $NF{\kappa}B$ in various diseases.

Activation of the NF-$\kappa$B p50/p65 Complex in Human Lung Cancer Cell Lines (인체 폐암세포주에서 NF-$\kappa$B p50/p65 Complex의 활성화)

  • Choi, Hyung-Seok;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.185-194
    • /
    • 1999
  • Background: NF-$\kappa$B is a characteristic transcriptional factor whose functional activity is determined by post-translational modification of protein and subsequent change of subcellular localization. The involvement of the NF-$\kappa$B family of the transcription factors in the control of such vital cellular functions as immune response, acute phase reaction, replication of certain viruses and development and differentiation of cells has been clearly documented in many previous studies. Several recent observations have suggested that the NF-$\kappa$B might also be involved in the carcinogenesis of some hematological and solid tumors. Investigating the possibility that members of the NF-$\kappa$B family participate in the molecular control of malignant cell transformation could provide invaluable information on both molecular pathogenesis and cancer-related gene therapy. Method: To determine the expression patterns and functional roles of NF-$\kappa$B family transcription factors in human lung cancer cell lines NCI-H792, NCI-H709, NCI-H226 and NCI-H157 were analysed by western blot, using their respective antibodies. The nuclear and the cytoplasmic fraction of protein extract of these cell lines were subsequently obtained and NF-$\kappa$B expression in each fraction was again determined by western blot analysis. The type of NF-$\kappa$B complex present in the cells was determined by immunoprecipitation. To detect the binding ability of cell-line nuclear extracts to the KB consensus oligonucleotide, electrophoretic mobility shift assay(EMSA) was performed. Results: In the cultured human lung cancer cell lines tested, transcription factors of the NF-$\kappa$B family, namely the p50 and p65 subunit were expressed and localized in the nuclear fraction of the cellular extract by western blot analysis and immunocytochemistry. Immunoprecipitation assay showed that in the cell, the p50 and p65 subunits made NF-$\kappa$B complex. Finally it was shown by Electrophoretic Mobility Shift Assay(EMSA) that nuclear extracts of lung cancer cell lines are able to bind to NF-$\kappa$B consensus DNA sequences. Conclusion: These data suggest that in human lung cancer cell lines the NF-$\kappa$B p50/p65 complex might be activated. and strengthen the hypothesis that NF-$\kappa$B family transcription factors might be involved in the carcinogenesis of human lung cancer.

  • PDF

Bee Venom Inhibits PC-3 Cell Proliferation Through Induction of Apoptosis Via Inactivation of NF-${\kappa}B$ (Bee Venom이 NF-${\kappa}B$의 불활성화에 의한 세포자멸사를 통해 PC-3 세포의 증식에 미치는 영향)

  • Oh, Hyun-Jun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.27 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • 목적 : 이 연구는 봉약침의 봉독과 그 주요성분인 멜리틴이 NF-${\kappa}B$의 활성억제와 세포자멸사 관련 단백질의 발현 조절을 통하여 세포자멸사를 유도함으로써 전립선 암세포주인 PC-3 세포의 성장을 억제하는지를 확인하고 해당 기전을 살펴보고자 하였다. 방법 : 봉독이나 멜리틴을 처리한 후 PC-3의 성장억제를 관찰하기 위해 WST-1 assay, CCK-8 assay를 시행하였고, 세포자멸사 조절단백질의 변동 관찰에는 western blot analysis를 시행하였고, 세포자멸사와 연관된 NF-${\kappa}B$의 활성 변화를 관찰하기 위해 EMSA를 시행하였으며, PC-3에서 봉독이나 멜리틴과 NF-${\kappa}B$의 상호작용을 관찰하기 위해 transient transfection assay를 시행하여 세포생존율과 NF-${\kappa}B$의 활성 변동을 측정하였다. 결과 : PC-3 세포에 봉독이나 멜리틴을 처리한 후, 전립선암세포의 성장, 세포자멸사의 유발, 세포자멸사 관련 단백질의 발현, NF-${\kappa}B$의 활성, NF-${\kappa}B$의 p50, $IKK{\alpha}$, $IKK{\beta}$ 치환 후 NF-${\kappa}B$의 활성과 PC-3 세포 증식에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. PC-3 세포에서 봉독이나 멜리틴을 처리한 후 세포자멸사가 유도되어 세포성장이 억제되었고, 세포자멸사 관련 단백질 중 분리된 PARP, caspase-3, -9는 유의한 증가를, Bcl-2, XIAP, cXIAP2는 유의한 감소를 나타내었다. 2. PC-3 세포에서 봉독이나 멜리틴을 처리한 후 NF-${\kappa}B$의 활성은 유의한 감소를 나타내었다. 3. PC-3 세포에서 NF-${\kappa}B$의 p50, $IKK{\alpha}$, $IKK{\beta}$를 치환하여 작용기를 없애고 봉독이나 멜리틴을 처리하였을 경우에도 NF-${\kappa}B$의 활성이 유의한 감소를 나타내었다. 결론 : 이상의 결과는 봉독이나 멜리틴이 NF-${\kappa}B$의 활성 억제를 통하여 인간 전립선암세포주인 PC-3의 세포자멸사를 유발함으로써 증식억제 효과가 있음을 입증한 것으로, 전립선암의 예방과 치료에 대한 효과적인 치료제 개발에 도움이 될 것으로 기대된다.

Melittin Inhibits DU -145 Human Refractory Prostate Cancer Cell Growth Through Induction of Apoptosis Via Inactivation of NF-${\kappa}$B (Melittin이 NF-${\kappa}$B의 불활성화를 통한 DU-145 전립선 암세포의 성장 및 세포자멸사 유도에 미치는 영향)

  • Choi, Chul-Hoon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.26 no.3
    • /
    • pp.39-48
    • /
    • 2009
  • 목적 : 이 연구는 봉약침의 주요성분인 멜리틴이 NF-${\kappa}$B의 활성억제를 통하여 세포자멸사를 유도하고, 전립선 암세포주인 DU-145 세포의 성장을 억제하는지를 확인하고 멜리틴의 NF-${\kappa}$B 활성억제기전을 살펴보고자 하였다. 방법 : 멜리틴을 처리한 후 DU-145의 성장억제를 관찰하기 위해 WST-1 assay를 시행하였고, 세포자멸 사의 관찰에는 DAPI stairung assay를 통한 세포형태관찰을 시행하였으며, 염증관련유전자 발현 관찰에는 western blot analysis를 시행하였고, 세포자멸사와 연관된 NF-${\kappa}$B의 활성 변화를 관찰하기 위해 EMSA와 luciferase assay를 시행하였으며, DU-145에서 멜리틴과 NF-${\kappa}$B의 상호작용을 관찰하기 위해 transient transfection assay를 시행 시 세포생존율과 NF-${\kappa}$B의 활성 변동을 측정하였다. 결과 : DU-145 세포에 멜리틴을 처리한 후, 전립선암세포의 성장, 세포자멸사의 유발, 염중관련유전자 발현 및 NF-${\kappa}$B의 활성, NF-${\kappa}$B의 p50 치환 후 NF-${\kappa}$B의 활성과 DU-145 세포 증식에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. DU-145 세포에서 멜리틴을 처리한 후 세포자멸사가 유도되어 세포성장이 억제되었다. 2. DU-145 세포에서 멜리틴을 처리한 후 염증관련유전자 발현 및 NF-${\kappa}$B의 활성에 유의한 감소를 나타내었다. 3. DU-145 세포에서 NF-${\kappa}$B의 p50와 IKK들을 치환하여 작용기를 없애고 멜리틴을 처리하였을 경우에도 세포활성 및 NF-${\kappa}$B의 활성의 유의한 감소를 나타내었다.

  • PDF

NF-κB in Cellular Senescence and Cancer Treatment

  • Jing, Hua;Lee, Soyoung
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.189-195
    • /
    • 2014
  • The NF-${\kappa}B$ pathway transcriptionally controls a large set of target genes that play important roles in cell survival, inflammation, and immune responses. While many studies showed anti-tumorigenic and pro-survival role of NF-${\kappa}B$ in cancer cells, recent findings postulate that NF-${\kappa}B$ participates in a senescence-associated cytokine response, thereby suggesting a tumor restraining role of NF-${\kappa}B$. In this review, we discuss implications of the NF-${\kappa}B$ signaling pathway in cancer. Particularly, we emphasize the connection of NF-${\kappa}B$ with cellular senescence as a response to chemotherapy, and furthermore, present examples how distinct oncogenic network contexts surrounding NF-${\kappa}B$ produce fundamentally different treatment outcomes in aggressive B-cell lymphomas as an example.

NF-κB and Therapeutic Approach

  • Lee, Chang-Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.219-240
    • /
    • 2009
  • Since NF-${\kappa}B$ has been identified as a transcription factor associated with immune cell activation, groups of researchers have dedicated to reveal detailed mechanisms of nuclear factor of ${\kappa}B$ (NF-${\kappa}B$) in inflammatory signaling for decades. The various molecular components of NF-${\kappa}B$ transcription factor pathway have been being evaluated as important therapeutic targets due to their roles in diverse human diseases including inflammation, cystic fibrosis, sepsis, rheumatoid arthritis, cancer, atherosclerosis, ischemic injury, myocardial infarction, osteoporosis, transplantation rejection, and neurodegeneration. With regards to new drugs directly or indirectly modulating the NF-${\kappa}B$ pathway, FDA recently approved a proteasome inhibitor bortezomib for the treatment of multiple myeloma. Many pharmaceutical companies have been trying to develop new drugs to inhibit various kinases in the NF-${\kappa}B$ signaling pathway for many therapeutic applications. However, a gene knock-out study for $IKK{\beta}$ in the NF-${\kappa}B$ pathway has given rise to controversies associated with efficacy as therapeutics. Mice lacking hepatocyte $IKK{\beta}$ accelerated cancer instead of preventing progress of cancer. However, it is clear that pharmacological inhibition of $IKK{\beta}$ appears to be beneficial to reduce HCC. This article will update issues of the NF-${\kappa}B$ pathway and inhibitors regulating this pathway.

No Relevance of NF-${\kappa}B$ in the Transcriptional Regulation of Human Nanog Gene in Embryonic Carcinoma Cells

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self renewal requires many factors such as Oct4, Sox2, FoxD3, and Nanog. NF-${\kappa}B$ is a transcription factor involved in many biological activities. Expression and activity of NF-${\kappa}B$ increase upon differentiation of ES cells. Reportedly, Nanog protein directly binds to NF-${\kappa}B$ protein and inhibits its activity in ES cells. Here, we found a potential binding site of NF-${\kappa}B$ in the human Nanog promoter and postulated that NF-${\kappa}B$ protein may regulate expression of the Nanog gene. We used human embryonic carcinoma (EC) cells as a model system of ES cells and confirmed decrease of Nanog and increase of NF-${\kappa}B$ upon differentiation induced by retinoic acid. Although deletion analysis on the DNA fragment including NF-${\kappa}B$ binding site suggested involvement of NF-${\kappa}B$ in the negative regulation of the promoter, site-directed mutation of NF-${\kappa}B$ binding site had no effect on the Nanog promoter activity. Furthermore, no direct association of NF-${\kappa}B$ with the Nanog promoter was detected during differentiation. Therefore, we conclude that NF-${\kappa}B$ protein may not be involved in transcriptional regulation of Nanog gene expression in EC cells and possibly in ES cells.

Upregulation of NF-κB upon differentiation of mouse embryonic stem cells

  • Kim, Young-Eun;Kang, Ho-Bum;Park, Jeong-A;Nam, Ki-Hoan;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.705-709
    • /
    • 2008
  • NF-${\kappa}B$ is a transcriptional regulator involved in many biological processes including proliferation, survival, and differentiation. Recently, we reported that expression and activity of NF-${\kappa}B$ is comparatively low in undifferentiated human embryonic stem (ES) cells, but increases during differentiation. Here, we found a lower expression of NF-${\kappa}B$ p65 protein in mouse ES cells when compared with mouse embryonic fibroblast cells. Protein levels of NF-${\kappa}B$ p65 and relB were clearly enhanced during retinoic acid-induced differentiation. Furthermore, increased DNA binding activity of NF-${\kappa}B$ in response to TNF-$\alpha$, an agonist of NF-${\kappa}B$ signaling, was seen in differentiated but not undifferentiated mouse ES cells. Taken together with our previous data in human ES cells, it is likely that NF-${\kappa}B$ expression and activity of the NF-${\kappa}B$ signaling pathway is comparatively low in undifferentiated ES cells, but increases during differentiation of ES cells in general.

Bee Venom Inhibits DU-145 Human Prostate Cancer Cell Growth Through Inactivation of NF-${\kappa}$B (Bee Venom이 NF-${\kappa}$B의 불활성화를 통해 DU-145 전립선 암세포의 성장에 미치는 영향)

  • Shin, Jung-Mi;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.28 no.3
    • /
    • pp.101-110
    • /
    • 2011
  • 목적 : 이 연구는 봉독이 NF-${\kappa}$B의 활성억제를 통하여 전립선 암세포주인 DU-145 세포의 성장을 억제하 는지를 확인하고 그 기전을 살펴보고자 하였다. 방법 : 봉독을 처리한 후 DU-145의 성장억제를 관찰하기 위해 WST-1 assay를 시행하였고, 세포자멸사의 관찰에는 DAPI staining assay를 통한 세포형태관찰을 시행하였으며, 염증관련유전자 발현 관찰에는 western blot analysis를 시행하였고, 세포자멸사와 연관된 NF-${\kappa}$B의 활성 변화를 관찰하기 위해 EMSA와 luciferase assay를 시행하였으며, DU-145에서 봉독과 NF-${\kappa}$B의 상호작용을 관찰하기 위해 transient transfection assay를 시행하여 세포생존율과 NF-${\kappa}$B의 활성 변동을 측정하였다. 결과 : DU-145 세포에서 봉독을 처리한 후 세포성장이 억제되었으며, 염증관련유전자 발현 및 NF-${\kappa}$B의 활성의 유의한 감소를 나타내었다. DU-145 세포에서 NF-${\kappa}$B의 p50와 IKK들을 치환하여 작용기를 없애고 봉독을 처리하였을 경우에도 세포활성 및 NF-${\kappa}$B의 활성의 유의한 감소를 나타내었다. 결론 : 이상의 결과는 봉독이 NF-${\kappa}$B의 활성 억제를 통하여 인간 전립선암세포주인 DU-145의 세포자멸사를 유발함으로써 증식억제 효과가 있음을 입증한 것으로 전립선암의 예방과 치료에 대한 효과적인 치료제 개발에 도움이 될 것으로 기대된다. 다만 그 기전에서 봉독은 기존연구와 같은 NF-${\kappa}$B p50 및 IKK들의 작용기와 상호작용 이외에 다른 기전이 관여되는 것으로 심화 연구를 요한다.