DOI QR코드

DOI QR Code

Upregulation of NF-κB upon differentiation of mouse embryonic stem cells

  • Kim, Young-Eun (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kang, Ho-Bum (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Park, Jeong-A (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Nam, Ki-Hoan (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwon, Hyung-Joo (Center for Medical Science Research, College of Medicine, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
  • Published : 2008.10.31

Abstract

NF-${\kappa}B$ is a transcriptional regulator involved in many biological processes including proliferation, survival, and differentiation. Recently, we reported that expression and activity of NF-${\kappa}B$ is comparatively low in undifferentiated human embryonic stem (ES) cells, but increases during differentiation. Here, we found a lower expression of NF-${\kappa}B$ p65 protein in mouse ES cells when compared with mouse embryonic fibroblast cells. Protein levels of NF-${\kappa}B$ p65 and relB were clearly enhanced during retinoic acid-induced differentiation. Furthermore, increased DNA binding activity of NF-${\kappa}B$ in response to TNF-$\alpha$, an agonist of NF-${\kappa}B$ signaling, was seen in differentiated but not undifferentiated mouse ES cells. Taken together with our previous data in human ES cells, it is likely that NF-${\kappa}B$ expression and activity of the NF-${\kappa}B$ signaling pathway is comparatively low in undifferentiated ES cells, but increases during differentiation of ES cells in general.

Keywords

References

  1. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 https://doi.org/10.1038/292154a0
  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 https://doi.org/10.1126/science.282.5391.1145
  3. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J. and Gepstein, L. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407-414 https://doi.org/10.1172/JCI200112131
  4. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R. and McKay, R. (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389-1394 https://doi.org/10.1126/science.1058866
  5. Bjorklund, L. M., Sanchez-Pernaute, R., Chung, S., Andersson, T., Chen, I. Y., McNaught, K. S., Brownell, A. L., Jenkins, B. G., Wahlestedt, C., Kim, K. S. and Isacson, O. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. U.S.A. 99, 2344-2349 https://doi.org/10.1073/pnas.022438099
  6. Bjorklund, A. and Lindvall, O. (2000) Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537-544 https://doi.org/10.1038/75705
  7. Pera, M. F. and Trounson, A. O. (2004) Human embryonic stem cells: prospects for development. Development 131, 5515-5525 https://doi.org/10.1242/dev.01451
  8. Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M. K., Itskovitz-Eldor, J. and Rao, M. S. (2004) Differences between human and mouse embryonic stem cells. Dev. Biol. 269, 360-380 https://doi.org/10.1016/j.ydbio.2003.12.034
  9. Daheron, L, Opitz, S. L., Zaehres, H., Lensch, W. M., Andrews, P.W., Itskovitz-Eldor, J. and Daley, G. Q. (2004) LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770-778 https://doi.org/10.1634/stemcells.22-5-770
  10. Kang, H. B., Kim, J. S., Kwon, H. J., Nam, K. H., Youn, H. S., Sok D. E. and Lee Y. (2005) Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev. 14, 395-401 https://doi.org/10.1089/scd.2005.14.395
  11. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H. and Smith, A. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391 https://doi.org/10.1016/S0092-8674(00)81769-9
  12. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. and Smith, A. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655 https://doi.org/10.1016/S0092-8674(03)00392-1
  13. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. and Yamanaka, S. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642 https://doi.org/10.1016/S0092-8674(03)00393-3
  14. Hyun, I., Hochedlinger, K., Jaenisch, R. and Yamanaka, S. (2007) New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell 1, 367-368 https://doi.org/10.1016/j.stem.2007.09.006
  15. Denk, A., Wirth, T. and Baumann, B. (2000) NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev. 11, 303-320 https://doi.org/10.1016/S1359-6101(00)00009-5
  16. Qiu, P., Pan, P. C. and Govind, S. (1998) A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125, 1909-1920
  17. Ghosh, S., May, M. J. and Kopp, E. B. (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260 https://doi.org/10.1146/annurev.immunol.16.1.225
  18. Liou, H.C. and Baltimore, D. (1993) Regulation of the NF-kappa B/rel transcription factor and I kappa B inhibitor system. Curr. Opin. Cell Biol. 5, 477-487 https://doi.org/10.1016/0955-0674(93)90014-H
  19. Hu, J., Haseebuddin, M., Young M. and Colburn, N. H. (2005) Suppression of p65 phosphorylation coincides with inhibition of IkappaBalpha polyubiquitination and degradation. Mol. Carcinog. 44, 274-284 https://doi.org/10.1002/mc.20142
  20. Ghosh, S. and Karin, M. (2002) Missing pieces in the NF-kappaB puzzle. Cell 109, Suppl:S81-96 https://doi.org/10.1016/S0092-8674(02)00703-1
  21. Lee, J. I. and Burckart, G. J. (1998) Nuclear factor kappa B: important transcription factor and therapeutic target. J. Clin. Pharmacol. 38, 981-993 https://doi.org/10.1177/009127009803801101
  22. Kang, H. B., Kim, Y. E., Kwon, H. J., Sok, D. E. and Lee, Y. (2007) Enhancement of NF-kappaB expression and activity upon differentiation of human embryonic stem cell line SNUhES3. Stem Cells Dev. 16, 615-623 https://doi.org/10.1089/scd.2007.0014
  23. Chia, R., Achilli, F., Festing, M. F. and Fisher, E. M. (2005) The origins and uses of mouse outbred stocks. Nat. Genet. 37, 1181-1186 https://doi.org/10.1038/ng1665
  24. Martin, G. R. and Evans, M. J. (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA. 72, 1441-1445 https://doi.org/10.1073/pnas.72.4.1441
  25. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. and Gruss, P. (1990) New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435-439 https://doi.org/10.1038/344435a0
  26. Cogswell, P. C., Scheinman, R. I. and Baldwin, A. S. Jr. (1993) Promoter of the human NF-kappa B p50/p105 gene: Regulation by NF-kappa B subunits and by c-REL. J. Immunol. 150, 2794-804
  27. Viswanathan, M., Yu, M., Mendoza, L. and Yunis, J. J. (1996) Cloning and transcription factor-binding sites of the human c-rel proto-oncogene promoter. Gene 170, 271-276 https://doi.org/10.1016/0378-1119(95)00773-3
  28. Wajant, H., Pfizenmaier, K. and Scheurich, P. (2003) Tumor necrosis factor signaling. Cell Death Differ. 10, 45-65 https://doi.org/10.1038/sj.cdd.4401189
  29. Lee, Y., Sohn, W. J., Kim, D. S. and Kwon, H. J. (2004) NF-kappaB- and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Eur. J. Biochem 271, 1094-105 https://doi.org/10.1111/j.1432-1033.2004.04011.x
  30. Lee, Y., Gotoh, A., Kwon, H. J., You, M., Kohli, L., Mantel, C., Cooper, S., Hangoc, G., Miyazawa, K., Ohyashiki, K. and Broxmeyer, H. E. (2002) Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 99, 4307-4317 https://doi.org/10.1182/blood.V99.12.4307
  31. Zampetaki, A., Zeng, L., Xiao, Q., Margariti, A., Hu, Y. and Xu, Q. (2007) Lacking cytokine production in ES cells and ES-cell-derived vascular cells stimulated by TNF-alpha is rescued by HDAC inhibitor trichostatin A. Am. J. Physiol. Cell Physiol. 293, C1226-C1238 https://doi.org/10.1152/ajpcell.00152.2007
  32. Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., Peters, H., Walter, T., Stojkovic, P., Evans, J., Stojkovic, M. and Lako, M. (2006) The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet. 15, 1894-1913 https://doi.org/10.1093/hmg/ddl112
  33. Na, S. I., Lee, M. Y., Heo, J. S. and Han, H. J. (2007) Hydrogen peroxide increases [3H]-2-deoxyglucose uptake via MAPKs, cPLA2, and NF-kappaB signaling pathways in mouse embryonic stem cells. Cell. Physiol. Biochem. 20, 1007-1018 https://doi.org/10.1159/000110541
  34. Sadowski, H. B. and Gilman, M. Z. (1993) Cell-free activation of a DNA-binding protein by epidermal growth factor. Nature 362, 79-83 https://doi.org/10.1038/362079a0

Cited by

  1. c-Rel RegulatesInscuteableGene Expression during Mouse Embryonic Stem Cell Differentiation vol.291, pp.7, 2016, https://doi.org/10.1074/jbc.M115.679563
  2. Knockdown of IKK1/2 Promotes Differentiation of Mouse Embryonic Stem Cells into Neuroectoderm at the Expense of Mesoderm vol.8, pp.4, 2012, https://doi.org/10.1007/s12015-012-9402-7
  3. Comparison of Osteogenic Differentiation of Embryonic Stem Cells and Primary Osteoblasts Revealed by Responses to IL-1β, TNF-α, and IFN-γ vol.23, pp.6, 2014, https://doi.org/10.1089/scd.2013.0336
  4. NFκB signaling regulates embryonic and adult neurogenesis vol.7, pp.4, 2012, https://doi.org/10.1007/s11515-012-1233-z
  5. High sensitivity of embryonic stem cells to proteasome inhibitors correlates with low expression of heat shock protein and decrease of pluripotent cell marker expression vol.45, pp.5, 2012, https://doi.org/10.5483/BMBRep.2012.45.5.299
  6. Granulosa cell-derived induced pluripotent stem cells exhibit pro-trophoblastic differentiation potential vol.6, pp.1, 2015, https://doi.org/10.1186/s13287-015-0005-5
  7. The Role of NF-κB Signaling in the Maintenance of Pluripotency of Human Induced Pluripotent Stem Cells vol.8, pp.2, 2013, https://doi.org/10.1371/journal.pone.0056399
  8. Protein Kinases in Pluripotency—Beyond the Usual Suspects vol.429, pp.10, 2017, https://doi.org/10.1016/j.jmb.2017.04.013
  9. Utilization of different anti-viral mechanisms by mammalian embryonic stem cells and differentiated cells vol.95, pp.1, 2017, https://doi.org/10.1038/icb.2016.70
  10. The underdeveloped innate immunity in embryonic stem cells: The molecular basis and biological perspectives from early embryogenesis pp.10467408, 2019, https://doi.org/10.1111/aji.13089