• Title/Summary/Keyword: NF membrane

Search Result 215, Processing Time 0.021 seconds

Semi-Industrial Scale Data (NF분리막에 의한 머어서폐수에서의 알칼리 회수 및 국내 실용화 방안 연구)

  • 손은종;최은경;김진우
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.354-359
    • /
    • 1998
  • 본 연구에서는 분획분자량이 RO막과 UF막 사이에 있는 NF막(Nanofiltration Membrane) 의 특성을 이용하여 앞서의 기초연구$^{1)}$ 를 바탕으로 현장적용을 위한 소현장규모의 실험을 수회 진행하여 실제로 NF막 공정기술의 현장실용화를 위해 검토되어야 할 사항 및 운전시간에 따른 막투과량 거동의 변화 및 온도의존성 등을 검토하였고, 이와 병행하여 염색공장, 염색공단조합, 폐알칼리 수거회사와의 면담을 통하여 머어서 공정 및 머어서 폐수 관련 현황을 조사하여 이를 토대로 분리막 공정의 경제성에 주요 역할을 하는 고농도 가성소다 폐수 수집을 위한 수세방법을 소개하였고 본 기술의 국내 실용화를 위한 문제점 파악 및 현 상황에서의 실용화 최적 방안을 제안하여 보았다.(중략)

  • PDF

An experimental study on decision making for multi-source water (다중수원 수처리 의사결정에 관한 실험적 연구)

  • Jung, Jungwoo;Cho, Hyeong-Rak;Lee, Sangho;Chae, Soo-Kwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran;Kim, Min-Seuk;Jo, Hae;Byun, Hae-Mi;Shin, Dong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

Effect of Thrombin on the TNF-$\alpha$ Induced IL-6 Production in HUVECs (혈관내피세포에서 트롬빈이 TNF-$\alpha$에 의해 유도되는 IL-6에 미치는 영향)

  • Bae, Jong-Sup;Park, Moon-Ki
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Here, we evaluated the effect of thrombin on the interleukin-6 production induced by tumor-necrosis-factor-$\alpha$ in endothelial cells. It is well known that tumor-necrosis-factor-$\alpha$ mediates inflammatory responses by activation of nuclear factor-kappa-B in endothelial cells. Here, we showed that lower concentration of thrombin decreased the production of interleukin-6 induced by tumor-necrosis-factor-$\alpha$ and this inhibitory effect of thrombin on interleukin-6 production was mediated by interacting with protease-activated-receptor-1. In addition, phosphoinositide-3-kinase was also involved the anti-inflammatory responses by lower concentration of thrombin in endothelial cells. These results suggested that lower concentration of thrombin mediated anti-inflammatory responses by interacting with protease-activated-receptor-1 on the cell membrane and phosphoinositide-3-kinase in the cell. These findings will provide the important evidence in the development of new medicine for the treatment of severe sepsis and inflammatory diseases and good clue for understanding unknown mechanisms by which thrombin showed the pro-inflammatory or anti-inflammatory activities in endothelial cells.

Preparation of Storage-Stable Liquid Dyes by Membrane Separation Technology (막분리 기술을 위한 액체염료 제조에 관한 연구)

  • Cho, Jung Hee;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.349-359
    • /
    • 1992
  • Studies were carried out on the selective removal of inorganic salts such as NaCl and $Na_2SO_4$ from dye solution, using counter diffusion-reverse osmosis and nanofiltration, respectivey. For the dye solution used in the experiments, 1 to 30% of salts were removed by counter diffusion while the loss of dye molecules was less than 0.3%. The separation factors by one pass operation were 10-500 according to ionic species. In five successive operations, removals of anion($Cl^-$) increased but those of cation($Na^+$) decreased due to the Donnan effect. Effects of feed flow rate on removal efficiencies of various ions were also observed at constant flow rate of stripping water. Reverse osmosis of desalted dye solution by counter diffusion was conducted to prepare highly concentrated liquid dyes. The rejection efficiency of dye molecules was greater than 99%. For the rejection efficiency of chloride ion, experimental values were compared with theoretical ones based on solution-diffusion model. Two stage diafiltration was performed in nanofiltration. The rejection efficiency of chloride ion was continuously decreased due to the Donnan dialysis and even negative rejection was observed. The Donnan effect was more pronounced in the second diafiltration.

  • PDF

Cilostazol ameliorates diabetic nephropathy by inhibiting high-glucose-induced apoptosis

  • Chian, Chien-Wen;Lee, Yung-Shu;Lee, Yi-Ju;Chen, Ya-Hui;Wang, Chi-Ping;Lee, Wen-Chin;Lee, Huei-Jane
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.403-412
    • /
    • 2020
  • Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels.

Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages

  • Lee, Hyo-Ji;Hong, Wan-Gi;Woo, Yunseo;Ahn, Jae-Hee;Ko, Hyun-Jeong;Kim, Hyeran;Moon, Sungjin;Hahn, Tae-Wook;Jung, Young Mee;Song, Dong-Keun;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.989-1001
    • /
    • 2020
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.

Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation

  • Jeong-Woong Park;Marc Ndimukaga;Jaerung So;Sujung Kim;Anh Duc Truong;Ha Thi Thanh Tran;Hoang Vu Dang;Ki-Duk Song
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.183-196
    • /
    • 2023
  • Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.

Effects of Substrates on Nanofiltration Characteristics of Multilayer Polyelectrolyte Membranes (다층 고분자 전해질 막의 나노여과 특성에 미치는 지지체의 영향)

  • Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In a previous study, we probed the potential of poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) nanofiltration (NF) membranes for the separation of monovalent anions, with an emphasis on the selective rejection of $F^-$. Remarkably, deposition of $(PSS/PBADMAC)_4PSS$ films on porous alumina supports yielded membranes that exhibited $Cl^-/F^-$ selectivity > 3 with minimal $Cl^-$ rejection, and a solution flux of $3.5m^3/m^2$-day at 4.8 bar. When the number of PSS/PDADMAC bilayers was increased from 4.5 to 5.5, however, $F^-$ rejection decreased from 73% to 50% and $Cl^-/F^-$ selectivity dropped to 1.9. Addition of another bilayer to form $(PSS/PDADMAC)_6$ PSS films resulted in a significant increase in $Cl^-$ rejection to give essentially no $Cl^-/F^-$ selectivity. The decrease of selectivity with deposition of more than 4.5 bilayers was not expected and it was unclear whether this characteristic was substrate independent. In this study, to investigate the effect of substrates on NF performance of multilayer polyelectrolyte membranes, PSS/PDADMAC films were deposited on 50 kDa polyethersulfone (PES) ultrafiltration supports instead of porous alumina supports. The results indicate that, although fluoride rejection and the number of bilayers at which a maximum $F^-$ rejection occurs are different, the trend is similar for both types of substrates. Therefore, we can conclude that the M: characteristics of multilayer polyelectrolyte membranes may be substrate independent.

The Effect of Deer Antler Herbal Acupuncture Control to Hyper-inflammatory Responses on Synovial Membrane by LPS-induced Arthritis (약용약침(藥茸藥鍼)이 LPS 유발(誘發) 관절염(關節炎)의 윤활관절막내(潤滑關節膜內) 과다염증반응(過多炎症反應) 조절(調節)에 미치는 영향(影響))

  • Chung, Yong-Re;Lee, Seung-Deok;Byun, Hyuk;Park, In-Shik;Jung, Chan-Yung;Lee, Chang-Hwan;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.24 no.4
    • /
    • pp.167-181
    • /
    • 2007
  • Objectives: To evaluate expression of MIF mRNA, MIF, $TNF-{\alpha}$, $IL-6R-{\alpha}$, STAT-3, $NF-{\kappa}B$ p65, COX-2 and iNOS, MMP-9mRNA after injecting deer antler herbal acupuncture solution in a LPS rat model. Methods: The experiment was divided in category of the control group, RA group, and NA group. RA was induced in the mice via injecting 300ug/kg LPS. The deer antler herbal acupuncture solution 50ug/kg was applied on $ST_{35}$(犢鼻) and EX-LE201(內膝眼) for 19days from $3^{rd}$ day of RA inducement. Results: 1. In the deer antler herbal acupuncture solution treated RAW 264.7cell, the mRNA expression of cytokines, RA related inflammation factors, such as the MIF, COX- 2, iNOS, and MMP-g reduced concentration dependently. 2. In the deer antler herbal acupuncture treated mice's synovial membrane, decrease in the cell replication of synovial joint cells, regeneration of blood vessel, fibrosis and fibroblastic cells expansion were observed. 3. Positive reaction of RA-related cytokines MIF, $TNF-{\alpha}$, $IL-6R-{\alpha}$, STAT3, COX-2, iNOS, $NF-\;{\kappa}B$ p65, MMP-9 was reduced. Conclusion : On the basis of the results, it was concluded that deer antler herbal acupuncture extract has significant protecting ability against acute progressive RA by inhibiting the production of MIF, as a top in cytokines related to inflammation.

  • PDF