혈관내피세포에서 트롬빈이 TNF-$\alpha$에 의해 유도되는 IL-6에 미치는 영향

Effect of Thrombin on the TNF-$\alpha$ Induced IL-6 Production in HUVECs

  • 배종섭 (대구한의대학교 한방산업대학 한방제약공학과) ;
  • 박문기 (대구한의대학교 한방산업대학 한방제약공학과)
  • Bae, Jong-Sup (Department of Herbal Pharmaceutical Engineering, College of Herbal Bio-Industry, Daegu Haany University) ;
  • Park, Moon-Ki (Department of Herbal Pharmaceutical Engineering, College of Herbal Bio-Industry, Daegu Haany University)
  • 투고 : 2009.10.17
  • 심사 : 2009.11.03
  • 발행 : 2010.02.28

초록

본 논문에서는 혈관내피세포에서 저농도의 트롬빈이 TNF-$\alpha$가 NF-kB의 활성화를 통해 생성되는 IL-6의 생성량에 미치는 영향을 관찰하였다. TNF-$\alpha$는 혈관내피세포에서 NF-kB의 활성화를 통해 염증을 유발시킨다는 것은 잘 알려진 사실이다. 이 논문에서는 TNF-$\alpha$가 매개하는 염증작용에서 저농도의 트롬빈은 TNF-$\alpha$가 생성시키는 IL-6의 생성량을 감소시켰고, 여기에는 트롬빈의 수용체인 PAR-1이 작용하다는 것을 확인하였다. 뿐만 아니라, 세포내의 PI3-Kinase 역시 저농도 트롬빈이 관여한다는 것을 확인하였다. 이것은 저농도의 트롬빈이 수용체인 PAR-1을 활성화시키고, 활성화된 PAR-1 은 PI3-Kinase의 활성화을 통해 항염증작용을 보여준디는 것을 의미한다. 이 결과는 향후 중증 패혈증 및 각종 염증질환을 치료할 수 있는 신약개발에 있어 중요한 단서를 제공하고 혈관내피세포에서 아직 명확하게 밝혀지지 않은 트롬빈의 염증작용 및 항염증작용의 기전을 밝히는데 좋은 정보를 제공할 것이다.

Here, we evaluated the effect of thrombin on the interleukin-6 production induced by tumor-necrosis-factor-$\alpha$ in endothelial cells. It is well known that tumor-necrosis-factor-$\alpha$ mediates inflammatory responses by activation of nuclear factor-kappa-B in endothelial cells. Here, we showed that lower concentration of thrombin decreased the production of interleukin-6 induced by tumor-necrosis-factor-$\alpha$ and this inhibitory effect of thrombin on interleukin-6 production was mediated by interacting with protease-activated-receptor-1. In addition, phosphoinositide-3-kinase was also involved the anti-inflammatory responses by lower concentration of thrombin in endothelial cells. These results suggested that lower concentration of thrombin mediated anti-inflammatory responses by interacting with protease-activated-receptor-1 on the cell membrane and phosphoinositide-3-kinase in the cell. These findings will provide the important evidence in the development of new medicine for the treatment of severe sepsis and inflammatory diseases and good clue for understanding unknown mechanisms by which thrombin showed the pro-inflammatory or anti-inflammatory activities in endothelial cells.

키워드

참고문헌

  1. Cihno, G., C. Napoli, M. Bucci, and C. Cicala (2000) Inflammation-coagulation network: Are serine protease receptors the knot?. Trends Pharmacol. Sci. 21: 170-2. https://doi.org/10.1016/S0165-6147(00)01469-3
  2. Coughlin, S. R. (2000) Thrombin signalling and protease-activated receptors. Nature 407: 258-64. https://doi.org/10.1038/35025229
  3. Coughlin, S. R. (2001) Protease-activated receptors in vascular biology. Thromb. Haemost 86: 298-307. https://doi.org/10.1055/s-0037-1616227
  4. Grand, R. J., A. S. Turnell, and P. W. Grabham (1996) Cellular consequences of thrombin-receptor activation. Biochem. J. 313: 353-368. https://doi.org/10.1042/bj3130353
  5. Klepfish, A., M. A. Greco, and S. Karpatkin (1993) Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix, Int. J. Cancer. 53: 978-982.
  6. Macfarlane, S. R., M. J. Seatter, T. Kanke, G. D. Hunter, and R. Plevin (2001) Proteinase-activated receptors. Pharmacol. Rev. 53: 245-282.
  7. Nierodzik, M. L., F. Kajumo, and S. Karpatkin (1992) Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Res. 52: 3267-72.
  8. Kaplanski, G., V. Marin, M. Fabrigoule, V. Boulay, A. M. Benoliel, P. Bongrand, S. Kaplanski, and C. Farnarier (1998) Thrombin-activated human endothelialcells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (Icam-1;Cd54) and vascular cell adhesion molecule-1 (Vcam-1;Cd106). Blood 92: 1259-67.
  9. Nierodzik, M. L., A. Plotkin, F. Kajumo, and S. Karpatkin (1991) Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J. Clin. Invest. 87: 229-236. https://doi.org/10.1172/JCI114976
  10. Coughlin, S. R. (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb Haemost 3: 1800-1814. https://doi.org/10.1111/j.1538-7836.2005.01377.x
  11. Ossovskaya, V. S., and N. W. Bunnett (2004) Protease-activated receptors: Contribution to physiology and disease. Physiol. Rev. 84: 579-621. https://doi.org/10.1152/physrev.00028.2003
  12. Steinhoff, M., J. Buddenkotte, V. Shpacovitch, A. Rattenholl, C. Moormann, N. Vergnolle, T. A. Luger, and M. D. Hollenberg (2005) Proteinase-activated receptors: Transducers of proternase-mediated signaling in inflammation and immune response. Endocr. Rev. 26: 1-43.
  13. Ishihara, H., A. J. Connolly, D. Zeng, M. L. Kahn, Y. W. Zheng, C. Timmons, T. Tram, and S. R. Coughlin (1997), Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502-6. https://doi.org/10.1038/386502a0
  14. Kahn, M. L., Y. W. Zheng, W. Huang, V. Bigornia, D. Zeng, S. Moff, R. V. Farese, Jr., C. Tam, and S. R. Coughlin (1998) A dual thrombin receptor system for platelet activation. Nature 394: 690-4. https://doi.org/10.1038/29325
  15. Vu, T. K., D. T. Hung, V. I. Wheaton, and S. R. Coughlin (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057-68. https://doi.org/10.1016/0092-8674(91)90261-V
  16. Xu, W. F., H. Andersen, T. E. Whitmore, S. R. Presnell, D. P. Yee, A. Ching, T. Gilbert, E. W. Davie, and D. C. Poster (1998) Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci., USA. 95: 6642-6. https://doi.org/10.1073/pnas.95.12.6642
  17. Camerer, E., W. Huang, and S. R. Coughlin (2000) Tissue factor- and factor x-dependent activation of protease-activated receptor 2 by factor viia. Proc. Natl. Acad. Sci., USA. 97: 5255-5260. https://doi.org/10.1073/pnas.97.10.5255
  18. Molino, M., E. S. Barnathan, R. Numerof, J. Clark, M. Dreyer, A. Cumashi, J. A. Hoxie, N. Schechter, M. Woolkalis, and L. F. Brass (1997) Interactions of mast cell tryptase with thrombin receptors and par-2. J. Biol. Chem. 272: 4043-4049. https://doi.org/10.1074/jbc.272.7.4043
  19. Nystedt, S., K. Emilsson, A. K. Larsson, B. Strombeck, and J. Sundelin (1995) Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur. J. Biochem. 232: 84-89. https://doi.org/10.1111/j.1432-1033.1995.tb20784.x
  20. Smith, R., A. Jenkins, A. Lourbakos, P. Thompson, V. Ramakrishnan, J. Tomlinson, U. Deshpande, D. A. Johnson, R. Jones, E. J. Mackie, and R. N. Pike (2000) Evidence for the activation of par-2 by the sperm protease, Acrosin: Expression of the receptor on oocytes. FEBS Lett. 484: 285-290. https://doi.org/10.1016/S0014-5793(00)02146-3
  21. Steinhoff, M., C. U. Corvera, M. S. Thoma, W. Kong, B. E. McAlpine, G. H. Caughey, J. C. Ansel, and N.W. Bunnett (1999) Proteinase-activated receptor-2 in human skin: Tissue distribution and activation of keratinocytes by mast cell tryptase. Exp. Dermatol. 8: 282-294.
  22. Rasmussen, U. B., V. Vouret-Craviari, S. Jallat, Y. Schlesinger, G. Pages, A. Pavirani, J. P. Lecocq, J. Pouyssegur, and E. Van Obberghen-Schilling (1991) Cdna cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett. 288: 123-128. https://doi.org/10.1016/0014-5793(91)81017-3
  23. Chin, A. C., N. Vergnolle, W. K. MacNaughton, J. L. Wallace, M. D. Hollenberg, and A. G. Buret (2003) Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proc. Natl. Acad. Sci., USA. 100: 11104-11109. https://doi.org/10.1073/pnas.1831452100
  24. Cunningham, M. A., E. Rondeau, X. Chen, S. R. Coughlin, S. R. Holdsworth, and P. G. Tipping (2000) Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glornerulonephritis. J. Exp. Med. 191: 455-462. https://doi.org/10.1084/jem.191.3.455
  25. Ludwicka-Bradley, A., E. Tourkina, S. Suzuki, E. Tyson, M. Bonner, J. W. Fenton, 2nd, S. Hoffman, and R. M. Silver (2000) Thrombin upregulates interleukin-8 in lung fibroblasts via cleavage of proteolytically activated receptor-i and protein kinase c-gamma activation. Am. J. Respi. Cell Mol. Biol. 22: 235-243. https://doi.org/10.1165/ajrcmb.22.2.3642
  26. Naldini, A. and D. H. Carney (1996) Thrombin modulation of natural killer activity in human peripheral lymphocytes. Cell Immunol. 172: 35-42. https://doi.org/10.1006/cimm.1996.0212
  27. Sambrano, G. R., E. J. Weiss, Y. W. Zheng, W. Huang, and S. R. Coughlin (2001) Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413: 74-78. https://doi.org/10.1038/35092573
  28. Sugama, Y., C. Tiruppathi, K. offakidevi, T. T. Andersen, J. W. Fenton, 2nd, and A. B. Malik (1992) Thrombin-induced expression of endothelial p-selectin and intercellular adhesion molecule-1: A mechanism for stabilizing neutrophil adhesion. J. Cell Biol. 119: 935-944. https://doi.org/10.1083/jcb.119.4.935
  29. Suk, K. and S. Cha (1999) Thrombin-induced interleukin-8 production and its regulation by interferon-gamma and prostaglandin E2 in human monocytic U937 Cells. Immunol. Lett. 67: 223-237. https://doi.org/10.1016/S0165-2478(99)00015-2
  30. Vergnolle, N., M. D. Hollenberg, and J. L. Wallace (1999) Pro- and anti-inflammatory actions of thrombin: A distinct role for proteinase-activated receptor-1(Parl). Br. J. Pharmacol. 126: 1262-1268. https://doi.org/10.1038/sj.bjp.0702408
  31. Arena, C. S., S. M. Quirk, Y. Q. Zhang, and K. P. Henrikson (1996) Rat uterine stromal cells: Thrombin receptor and growth stimulation by thrombin. Endocrinology 137: 3744-3749. https://doi.org/10.1210/en.137.9.3744
  32. Chang, M. C., C. P. Lin, T. F. Huang, W. H. Lan, Y. L. Lin, C. C. Hsieh, and J. H. Jeng (1998) Thrombin-induced DNA synthesis of cultured human dental pulp cells is dependent on its proteolytic activity and modulated by prostaglandin E2, J. Endod. 24: 709-713. https://doi.org/10.1016/S0099-2399(98)80158-1
  33. Colotta, F., F. L. Sciacca, M. Sironi, W. Luini, M. J. Rabiet, and A. Mantovani (1994) Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am. J. Pathol. 144: 975-985.
  34. Grandaliano, G., A. J. Valente, and H. E. Abboud (1994) A novel biologic activity of thrombin: Stimulation of monocyte chemotactic protein production. J. Exp. Med. 179: 1737-1741. https://doi.org/10.1084/jem.179.5.1737
  35. Howells, G. L., M. Macey, M. A. Curtis, and S. R. Stone (1993) Peripheral blood lymphocytes express the platelet-type thrombin receptor. Br. J. Haematol. 84: 156-1560. https://doi.org/10.1111/j.1365-2141.1993.tb03039.x
  36. Weinstein, J. R., S. J. Gold, D. D. Cunningham, and C. M. Gall (1995) Cellular localization of thrombin receptor mrna in rat brain: Expression by mesencephalic dopaminergic neurons and codistnbution with prothrombin mrna. J. Neurosci. 15: 2906-2919. https://doi.org/10.1523/JNEUROSCI.15-04-02906.1995
  37. Nelken, N. A., S. J. Soifer, J. O'Keefe, T. K. Vu, I. F. Charo, and S. R. Coughlin (1992) Thrombin receptor expression in normal and atherosclerotic human arteries. J. ClinInvest 90: 1614-1621.
  38. Bradley, J. R. (2008) Tnf-Mediated Inflammatory Disease, J. Pathol. 214: 149-160. https://doi.org/10.1002/path.2287
  39. Ratnnan, M. M., and G. McFadden (2006) Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog. 2: e4. https://doi.org/10.1371/journal.ppat.0020004
  40. Kim, H., J. S. Hwang, C. H. Woo, E. Y. Kim, T. H. Kim, K. J. Cho, J. H. Kim, J. M. Seo, and S. S. Lee (2008) Tnf-alpha-induced up-regulation of intercellular adhesion molecule-l is regulated by a rac-ros-dependent cascade in human airway epithelial cells, Exp. Mol. Med. 40: 167-175. https://doi.org/10.3858/emm.2008.40.2.167
  41. Muppidi, J. R., J. Tschopp, and R. M. Siegel (2004) Life and death decisions: Secondary complexes and lipid rafts in tnf receptor family signal transduction. Immunity 21: 461-465. https://doi.org/10.1016/j.immuni.2004.10.001
  42. Palladino, M. A., F. R. Bahjat, E. A. Theodorakis, and L. L. Moldawer (2003) Anti-tnf-alpha therapies: The next generation. Nat. Re. vDrug. Discov. 2: 736-746. https://doi.org/10.1038/nrd1175
  43. Karin, M. and F. R. Greten (2005) Nf-kappab: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5: 749-759. https://doi.org/10.1038/nri1703
  44. Lin, H. Y., S. H. Juan, S. C. Shen, F. L. Hsu, and Y. C. Chen (2003) Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in Raw264.7 macrophages involves heme oxygenase-1. Biochem. Pharmacol. 66: 1821-1832. https://doi.org/10.1016/S0006-2952(03)00422-2
  45. Zhang, G. (2004) Tumor necrosis factor family ligand-receptor binding. Curr. Opin. Struct. Biol. 14: 154-160. https://doi.org/10.1016/j.sbi.2004.03.003
  46. Drake, W. T., N. N. Lopes, J. W. Fenton, 2nd, A. C. Issekutz, A. Ueno, K. Murakami, K. Yamanouchi, M. Watanabe, and T. Kondo (1992) Thrombin enhancement of interleukin-1 and tumor necrosis factor-alpha induced polymorphonuclear leukocyte migration. Lab. Invest. 67: 617-627.
  47. Garcia, J. G., C. Patterson, C. Bahler, J. Aschner, C. M. Hart, and D. English (1993) Thrombin receptor activating peptides induce Ca2+ mobilization, barrier dysfunction, Prostaglandin synthesis, and platelet-derived growth factor mrna expression in cultured endothelium. J. Cell Physiol. 156: 541-549. https://doi.org/10.1002/jcp.1041560313
  48. Kayanoki, Y., S. Higashiyama, K. Suzuki, M. Asahi, S. Kawata, Y. Matsuzawa, and N. Taniguchi (1999) The requirement of both intracellular reactive oxygen species and intracellular calcium elevation for the induction of heparin-binding egf-like growth factor in vascular endothelial cells and smooth muscle cells. Biochem. Biophys. Res. Commun. 259: 50-55. https://doi.org/10.1006/bbrc.1999.0723
  49. Ueno, A., K. Murakami, K. Yamanouchi, M. Watanabe, and T. Kondo (1996) Thrombin stimulates production of mterleukin-8 in human umbilical vein endothelial cells, Immunology 88: 76-81. https://doi.org/10.1046/j.1365-2567.1996.d01-635.x
  50. Bae J. S., L. Yang, C. Manithody, and A. R. Rezaie (2007) Engineering a disulfide bond to stabilize the calcium-binding loop of activated protein C eliminates its anticoagulant but not its protective signaling properties. J. Biol. Chem. 282: 9251-9259. https://doi.org/10.1074/jbc.M610547200
  51. Bae, J. S., Y. U. Kim, M. K. Park, and A. R. Rezaie (2009) Concentration dependent dual effect of thrombin endothelial cells via par-1 and pi3 kinase. J. Cell Physiol. 219: 744-751. https://doi.org/10.1002/jcp.21718
  52. Bae J. S., L. Yang, C. Manithody, and A. R. Rezaie (2007) The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood 110: 3909-3916. https://doi.org/10.1182/blood-2007-06-096651