• Title/Summary/Keyword: NF

Search Result 3,089, Processing Time 0.03 seconds

Effect of Snake Venom on Cancer Growth through Induction of Apoptosis via Down Regulation of NF-${\kappa}B$ and STAT3 in the PA-1, Ovarian Cancer Cells (사독(蛇毒)이 난소암세포에 있어서 NF-${\kappa}B$와 STAT3의 활성억제와 관련된 세포자멸사유도를 통한 암세포 성장에 미치는 영향)

  • Lee, Byung-Choon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.29 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • 목적 : 최근 NF-${\kappa}B$와 STAT3의 활성억제와 관련된 항암제 연구가 주목받고 있으며, 본 연구는 사독(蛇毒)이 세포자멸사 관련 단백질의 발현 조절을 통하여 세포자멸사를 유도하고, NF-${\kappa}B$와 STAT3의 활성억제를 유도하여 난소암 PA-1 세포의 성장을 억제하는지를 확인하고, 해당 기전을 살펴보고자 하였다. 방법 : 사독을 처리한 후 난소암 PA-1 세포의 세포자멸사의 관찰에는 DAPI, TUNEL staining assay를 시행하였고, 세포자멸사 조절단백질 및 NF-${\kappa}B$, STAT3의 활성 변동 관찰에는 western blot analysis를 시행하였다. 결과 : 1. 사독을 처리한 후 난소암 PA-1 세포에서 세포자멸사가 유도되어 암세포성장이 억제되었다. 2. 사독을 처리한 후 세포자멸사 관련 단백질 중 세포자멸사 촉진 단백질인 cleaved caspase-3, Bax의 발현은 증가되었고, 세포자멸사 억제 단백질인 Bcl-2의 발현은 감소되었다. 3. 사독을 처리한 후 난소암 PA-1 세포의 NF-${\kappa}B$와 STAT3 발현은 감소되었고, 각각의 길항제인 salicylic acid와 stattic 처리 후 NF-${\kappa}B$와 STAT3 발현은 더욱 감소되었다. 결론 : 사독은 난소암 세포의 세포자멸사 유발과, NF-${\kappa}B$와 STAT3의 활성억제를 통해 치료 효율이 높고, 내성이 적은 난소암 치료제의 개발에 도움이 될 것으로 기대된다.

Neurofibromatosis type 1: a single center's experience in Korea

  • Kim, Min Jeong;Cheon, Chong Kun
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.9
    • /
    • pp.410-415
    • /
    • 2014
  • Purpose: Neurofibromatosis 1 (NF1) is an autosomal dominant condition caused by an NF1 gene mutation. NF1 is also a multisystem disorder that primarily affects the skin and nervous system. The goal of this study was to delineate the phenotypic characterization and assess the NF1 mutational spectrum in patients with NF1. Methods: A total of 42 patients, 14 females and 28 males, were enrolled in this study. Clinical manifestations and results of the genetic study were retrospectively reviewed. Results: Age of the patients at the time of NF1 diagnosis was $15.8{\pm}14.6$ years (range, 1-62 years). Twelve patients (28.6%) had a family history of NF1. Among the 42 patients, $Caf\acute{e}$-au-lait spots were shown in 42 (100%), neurofibroma in 31 (73.8%), freckling in 22 (52.4%), and Lisch nodules in seven (16.7%). The most common abnormal finding in the brain was hamartoma (20%). Mental retardation was observed in five patients (11.9%), seizures in one patient (2.4%), and plexiform neurofibromas (PNFs) in four patients (9.5%). One patient with PNFs died due to a malignant peripheral nerve sheath tumor in the chest cavity. Genetic analysis of seven patients identified six single base substitutions (three missense and three nonsense) and one small deletion. Among these mutations, five (71.4%) were novel (two missense mutations: p.Leu1773Pro, p.His1170Leu; two nonsense mutations: $p.Arg2517^*$, $p.Cys2371^*$; one small deletion: $p.Leu1944Phefs^*6$). Conclusion: The clinical characteristics of 42 Korean patients with NF1 were extremely variable and the mutations of the NF1 gene were genetically heterogeneous with a high mutation-detection rate.

Gamma Irradiation Up-regulates Expression of B Cell Differentiation Molecule CD23 by NF-κB Activation

  • Rho, Hyun-Sook;Park, Soon-Suk;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.507-514
    • /
    • 2004
  • Gamma irradiation ($\gamma$-IR) is reported to have diverse effects on immune cell apoptosis, survival and differentiation. In the present study, the immunomodulatory effect of a low dose $\gamma$-IR (5~10 Gy) was investigated, focusing on the role of NF-${\kappa}B$ in the induction of the B cell differentiation molecule, CD23/FceRII. In the human B cell line Ramos, $\gamma$-IR not only induced CD23 expression, but also augmented the IL-4-induced surface CD23 levels. While $\gamma$-IR did not cause STAT6 activation in these cells, it did induce both DNA binding and the transcriptional activity of NF-${\kappa}B$ in the $I{\kappa}B$ degradation-dependent manner. It was subsequently found that different NF-${\kappa}B$ regulating signals modulated the $\gamma$-IR-or IL-4-induced CD23 expression. Inhibitors of NF-${\kappa}B$ activation, such as PDTC and MG132, suppressed the $\gamma$-IR-mediated CD23 expression. In contrast, Ras, which potentiates $\gamma$-IR-induced NF-${\kappa}B$ activity in these cells, further augmented the $\gamma$-IR- or IL-4-induced CD23 levels, The induction of NF-${\kappa}B$ activation and the subsequent up-regulation of CD23 expression by $\gamma$-IR were also observed in monocytic cells. These results suggest that $\gamma$-IR, at specific dosages, can modulate immune cell differentiation through the activation of NF-${\kappa}B$, and this potentially affects the immune inflammatory response that is mediated by cytokines.

Deletion Analysis of the Major NF-${\kappa}B$ Activation Domain in Latent Membrane Protein 1 of Epstein-Barr Virus

  • Cho, Shin;Lee, Won-Keun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.256-262
    • /
    • 1999
  • Latent membrane protein 1 (LMP1) of the Epstein-Barr virus (EBV) is an integral membrane protein with six transmembrane domains, which is essential for EBV-induced B cell transformation. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) like membrane receptor, whose signaling requires recruitment of TNFR-associated factors (TRAFs) and leads to NF-${\kappa}B$ activation. NF-${\kappa}B$ activation by LMP1 is critical for B cell transformation and has been linked to many phenotypic changes associated with EBV-induced B cell transformation. Deletion analysis has identified two NF-${\kappa}B$ activation regions in the carboxy terminal cytoplasmic domains of LMP1, termed CTAR1 (residues 194-232) and CTAR2 (351-386). The membrane proximal C-terminal domain was precisely mapped to a PXQXT motif (residues 204-208) involved in TRAF binding as well as NF-${\kappa}B$ activation. In this study, we dissected the CTAR2 region, which is the major NF-${\kappa}B$ signaling effector of LMP1, to determine a minimal functional sequence. A series of LMP1 mutant constructs systematically deleted for the CTAR2 region were prepared, and NF-${\kappa}B$ activation activity of these mutants were assessed by transiently expressing them in 293 cells and Jurkat T cells. The NF-${\kappa}B$ activation domain of CTAR2 appears to reside in a stretch of 6 amino acids (residues 379-384) at the end of the carboxy terminus.

  • PDF

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

Wnt-C59 inhibits proinflammatory cytokine expression by reducing the interaction between β-catenin and NF-κB in LPS-stimulated epithelial and macrophage cells

  • Jang, Jaewoong;Song, Jaewon;Sim, Inae;Yoon, Yoosik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.307-319
    • /
    • 2021
  • Dysregulation of the Wnt pathway causes various diseases including cancer, Parkinson's disease, Alzheimer's disease, schizophrenia, osteoporosis, obesity and chronic kidney diseases. The modulation of dysregulated Wnt pathway is absolutely necessary. In the present study, we evaluated the anti-inflammatory effect and the mechanism of action of Wnt-C59, a Wnt signaling inhibitor, in lipopolysaccharide (LPS)-stimulated epithelial cells and macrophage cells. Wnt-C59 showed a dose-dependent anti-inflammatory effect by suppressing the expression of proinflammatory cytokines including IL6, CCL2, IL1A, IL1B, and TNF in LPS-stimulated cells. The dysregulation of the Wnt/β-catenin pathway in LPS stimulated cells was suppressed by WntC59 treatment. The level of β-catenin, the executor protein of Wnt/β-catenin pathway, was elevated by LPS and suppressed by Wnt-C59. Overexpression of β-catenin rescued the suppressive effect of Wnt-C59 on proinflammatory cytokine expression and nuclear factor-kappa B (NF-κB) activity. We found that the interaction between β-catenin and NF-κB, measured by co-immunoprecipitation assay, was elevated by LPS and suppressed by Wnt-C59 treatment. Both NF-κB activity for its target DNA binding and the reporter activity of NF-κB-responsive promoter showed identical patterns with the interaction between β-catenin and NF-κB. Altogether, our findings suggest that the anti-inflammatory effect of Wnt-C59 is mediated by the reduction of the cellular level of β-catenin and the interaction between β-catenin and NF-κB, which results in the suppressions of the NF-κB activity and proinflammatory cytokine expression.

Anti-inflammatory Effects of Lactobacillus johnsonii Lysate via Regulation of NF-κB Activity (NF-κB 활성 조절을 통한 Lactobacillus johnsonii 파쇄액의 항염 효과)

  • Hwa Jun Cha
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • In this study, the anti-inflammation efficacy of Lactobacillus johnsonii derived from Kimchi was investigated. Raw 264.7 cells, which are rat-derived macrophages, were treated with Lactobacillus johnsonii lysate to confirm the expression level of TNFα and IL1β, which are inflammatory markers, and when treating 250 ㎍/mL extract, the expression level of TNFα and IL1β decreased by 40.55% and 34.66% compared to the control group treated with 1 ㎍/mL LP, respectively. In addition, as a result of confirming the transcriptional activity of NF-κB, a key transcription factor in cytokine expression by LPS, it was confirmed that the transcriptional activity of NF-κB was 40.76% inhibited compared to the control group treated with 1 ㎍/mL LPS. Therefore, the results of this study confirmed that Lactobacillus johnsonii lysate is likely to be an anti-inflammatory or skin-soothing functional material by preventing the expression of cytokine by LPS and controlling NF-κB transcriptional activity.

The Apoptotic Effect of Bee Venom and Melittin on FBS-induced Vascular Smooth Muscle Cells Proliferation (봉약침액과 melittin의 세포고사 효과가 FBS에 의하여 유도되는 혈관 평활근 세포 증식에 미치는 영향)

  • Han, Jae-Choon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.91-102
    • /
    • 2006
  • 목적 : 이 연구에서는 FBS에 의하여 유도되는 혈관 평활근 세포 증식에 대한 봉약침액과 Melittin의 세포 고사효과의 영향 및 작용 기전을 살펴보고자 하였다. 방법 : $I{\kappa}Ba$, p-$I{\kappa}Ba$, p-ERK1/2, p-Akt, p53, Bcl-2, Bax 및 active caspase-3는 Western blotting을, $NF-{\kappa}B$는 EMSA와 immunofluorescence staining을 이용하여 측정하였다. 결과 : 1. Melittin은 $NF-{\kappa}B$ 활성에 대하여 $I{\kappa}Ba$의 인산화를 유의하게 익제하고 $I{\kappa}Ba$를 증가시켰으며, $NF-{\kappa}B$의 DNA 결합과 $NF-{\kappa}B$ p50의 핵 내 유입을 유의하게 감소시켰다. 2. Melittin은 $NF-{\kappa}B$ 활성을 증가시키는 물질인 Akt의 인산화를 유의하게 억제하였고, ERK1/2의 인산화도 억제하였다. 3. Melittin은 세포사멸 전구 단백질인 p53, Bax 및 caspase-3의 발현을 유의하게 증가시켰고, 세포사멸억제 단백질인 Bcl-2의 발현은 감소시켰다. 결론 : 이상의 결과는 $NF-{\kappa}B$ 와 Akt 활성을 억제함으로써 혈관평활근세포 증식을 억제하는 효과가 있음을 입증한 것이며, 향후 안전성 연구를 바탕으로 혈관성형술 후 재발성협착증과 동맥경화증의 치료제로 사용될 수 있을 것으로 기대된다.

  • PDF

Salsolinol, a tetrahydroisoquinoline-derived neurotoxin, induces oxidative modification of neurofilament-L: protection by histidyl dipeptides

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.114-119
    • /
    • 2012
  • Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegeneration. Oxidative modification of neurofilament proteins has been implicated in the pathogenesis of neurodegenerative disorders. In this study, oxidative modification of neurofilament-L (NF-L) by salsolinol and the inhibitory effects of histidyl dipeptides on NF-L modification were investigated. When NF-L was incubated with 0.5 mM salsolinol, the aggregation of protein was increased in a time-dependent manner. We also found that the generation of hydroxyl radicals (${\bullet}OH$) was linear with respect to the concentrations of salsolinol as a function of incubation time. NF-L exposure to salsolinol produced losses of glutamate, lysine and proline residues. These results suggest that the aggregation of NF-L by salsolinol may be due to oxidative damage resulting from free radicals. Carnosine, histidyl dipeptide, is involved in many cellular defense processes, including free radical detoxification. Carnosine, and anserine were shown to significantly prevent salsolinol-mediated NF-L aggregation. Both compounds also inhibited the generation of ${\bullet}OH$ induced by salsolinol. The results indicated that carnosine and related compounds may prevent salsolinol-mediated NF-L modification via free radical scavenging.

Hepatitis Delta Virus Large Antigen Sensitizes to TNF-α-Induced NF-κB Signaling

  • Park, Chul-Yong;Oh, Sang-Heun;Kang, Sang Min;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Hepatitis delta virus (HDV) infection causes fulminant hepatitis and liver cirrhosis. To elucidate the molecular mechanism of HDV pathogenesis, we examined the effects of HDV viral proteins, the small hepatitis delta antigen (SHDAg) and the large hepatitis delta antigen (LHDAg), on $NF-{\kappa}B$ signaling pathway. In this study, we demonstrated that $TNF-{\alpha}-induced$ $NF-{\kappa}B$ transcriptional activation was increased by LHDAg but not by SHDAg in both HEK293 and Huh7 cells. Furthermore, LHDAg promoted TRAF2-induced $NF-{\kappa}B$ activation. Using coimmunoprecipitation assays, we demonstrated that both SHDAg and LHDAg interacted with TRAF2 protein. We showed that isoprenylation of LHDAg was not required for the increase of $NF-{\kappa}B$ activity. We further showed that only LHDAg but not SHDAg increased the $TNF-{\alpha}-mediated$ nuclear translocation of p65. This was accomplished by activation of $I{\kappa}B_{\alpha}$ degradation by LHDAg. Finally, we demonstrated that LHDAg augmented the COX-2 expression level in Huh7 cells. These data suggest that LHDAg modulates $NF-{\kappa}B$ signaling pathway and may contribute to HDV pathogenesis.