• Title/Summary/Keyword: NEWFM

Search Result 29, Processing Time 0.026 seconds

Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method (점증적 증가를 이용한 첨점 기반의 간질 검출)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.287-293
    • /
    • 2015
  • This study proposed signal processing techniques and neural network with weighted fuzzy membership functions(NEWFM) to detect epileptic seizure from EEG signals. This study used wavelet transform(WT), sequential increment method, and phase space reconstruction(PSR) as signal processing techniques. In the first step of signal processing techniques, wavelet coefficients were extracted from EEG signals using the WT. In the second step, sequential increment method was used to extract peaks from the wavelet coefficients. In the third step, 3D diagram was produced from the extracted peaks using the PSR. The Euclidean distances and statistical methods were used to extract 16 features used as inputs for NEWFM. The proposed methodology shows that accuracy, specificity, and sensitivity are 97.5%, 100%, 95% with 16 features, respectively.

Extracting Arrhythmia Classification Fuzzy Rules Using A Neural Network And Wavelet Transform (퍼지 신경망과 웨이블릿 변환을 이용한 부정맥 분류 퍼지규칙의 추출)

  • Kim Deok-Yong;Lim JoonShik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.110-113
    • /
    • 2005
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted fuzzy Membership Funcstions, NEWFM)을 이용하여 심전도 신호로부터 조기심실수축(Premature Ventricular Contraction, PVC)을 판별하는 퍼지규칙을 추출하고 있다. NEWFM은 자기적응적(self adaptive) 가중 퍼지소속함수를 가지고 주어진 입력 데이터로부터 학습하여 퍼지규칙을 생성하고 이를 기반으로 정상 파형과 PVC 파형을 구분한다. 분류 성능 평가를 위하여 MIT/BIH 부정맥 데이터 베이스를 사용하였으며, NEWFM의 입력은 심전도의 파형에 웨이블릿 변환을 적용하여 추출된 웨이블릿 계수를 사용하였다. 여기에 비중복면적 분산 측정법을 적용하여 중요도가 낮은 계수를 제거하면서 최소의 m 개 특징입력만을 사용한 하이퍼박스로 단순화 시킨다. 이러한 방법으로 추출된 2개의 웨이블릿 계수를 사용한 퍼지규칙은 $96\%$의 PVC 분류성능을 보여준다.

  • PDF

Features Extraction for Classifying Parkinson's Disease Based on Gait Analysis (걸음걸이 분석 기반의 파킨슨병 분류를 위한 특징 추출)

  • Lee, Sang-Hong;Lim, Joon-S.;Shin, Dong-Kun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.6
    • /
    • pp.13-20
    • /
    • 2010
  • This paper presents a measure to classify healthy persons and Parkinson disease patients from the foot pressure of healthy persons and that of Parkinson disease patients using gait analysis based characteristics extraction and Neural Network with Weighted Fuzzy Membership Functions (NEWFM). To extract the inputs to be used in NEWFM, in the first step, the foot pressure data provided by the PhysioBank and changes in foot pressure over time were used to extract four characteristics respectively. In the second step, wavelet coefficients were extracted from the eight characteristics extracted from the previous stage using the wavelet transform (WT). In the final step, 40 inputs were extracted from the extracted wavelet coefficients using statistical methods including the frequency distribution of signals and the amount of variability in the frequency distribution. NEWFM showed high accuracy in the case of the characteristics obtained using differences between the left foot pressure and the right food pressure and in the case of the characteristics obtained using differences in changes in foot pressure over time when healthy persons and Parkinson disease patients were classified by extracting eight characteristics from foot pressure data. Based on these results, the fact that differences between the left and right foot pressures of Parkinson disease patients who show a characteristic of dragging their feet in gaits were relatively smaller than those of healthy persons could be identified through this experiment.

Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method (퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.

Classification for early diagnosis for breast cancer base on Neural Network (뉴럴네트워크 기반의 유방암 조기 진단을 위한 분류)

  • Yoon, Hee-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.49-53
    • /
    • 2017
  • Breast cancer is the sccond most female cancer patient in the entire female cancer patient, and has emerged as the highest contributor to female cancer deaths. If breast cancer id detected early, the cure rate is 92 percent. However, if early detection fails, breast cancer has a very high rate of metastasis. The transition from cancer to cancer has become more successful as cancer progresses. Early diagnosis of cancer is an important factor in improving quality of life. Examples of breast cancer include Mammograph, ultrasound, and Momotome. Mommography is not only painful for the examiner, but also for easy access to breast cancer exam inations. In this paper, breast cancer diagnosis data mammograph data was used. In addition, the Neural Network were classified for early diagnosis of breast cancer early using NEWFM. After learning of data using NEWFM, the accuracy of the breast cancer data classification was 84.4391%.

Wavelet-Based Minimized Feature Selection for Motor Imagery Classification (운동 형상 분류를 위한 웨이블릿 기반 최소의 특징 선택)

  • Lee, Sang-Hong;Shin, Dong-Kun;Lim, Joon-S.
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.27-34
    • /
    • 2010
  • This paper presents a methodology for classifying left and right motor imagery using a neural network with weighted fuzzy membership functions (NEWFM) and wavelet-based feature extraction. Wavelet coefficients are extracted from electroencephalogram(EEG) signal by wavelet transforms in the first step. In the second step, sixty numbers of initial features are extracted from wavelet coefficients by the frequency distribution and the amount of variability in frequency distribution. The distributed non-overlap area measurement method selects the minimized number of features by removing the worst input features one by one, and then minimized six numbers of features are selected with the highest performance result. The proposed methodology shows that accuracy rate is 86.43% with six numbers of features.

Classification of Epilepsy Using Distance-Based Feature Selection (거리 기반의 특징 선택을 이용한 간질 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.321-327
    • /
    • 2014
  • Feature selection is the technique to improve the classification performance by using a minimal set by removing features that are not related with each other and characterized by redundancy. This study proposed new feature selection using the distance between the center of gravity of the bounded sum of weighted fuzzy membership functions (BSWFMs) provided by the neural network with weighted fuzzy membership functions (NEWFM) in order to improve the classification performance. The distance-based feature selection selects the minimum features by removing the worst features with the shortest distance between the center of gravity of BSWFMs from the 24 initial features one by one, and then 22 minimum features are selected with the highest performance result. The proposed methodology shows that sensitivity, specificity, and accuracy are 97.7%, 99.7%, and 98.7% with 22 minimum features, respectively.

Classification of the presence or absence of underlying disease in EEG Data using neural network (뉴럴네트워크를 이용하여 EEG Data의 기저질환 유무 분류)

  • Yoon, Hee-Jin
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.279-284
    • /
    • 2020
  • In January 2020, COVID19 plunged the whole planet into a pandemic. This has caused great economic losses and is causing social confusion. COVID19 has a superior infection rate among people with underlying disease such as heart disease, high blood pressure, diabetes, stroke, depression, and cancer. In addition, it was studied that patients with underlying disease had a higher fatality rate than those without underlying disease. In this study, the presence or absence of underlying disease was classified using EEG data. The data used to classify the presence or absence of underlying disease was EEG data provided by Data Science lab, consisting of 33 features and 69 samples. Z-score was used for data pretreatment. Classification was performed using the neural network NEWFM and ZNN engine. As a result of the classification of the presence or absence of the underlying disease, the experimental results were 77.945 for NEWFM and 76.4% for ZNN. Through this study, it is expected that EEG data can be measured, the presence or absence of an underlying disease is classified, and those with a high infection rate can be prevented from COVID19. Based on this, there is a need for research that can subdivide underlying disease in the future and research on the effects of each underlying disease on infectious disease.

Classificatin of Normal and Abnormal Heart Sounds Using Neural Network (뉴럴네트워크를 이용한 심음의 정상 비정상 분류)

  • Yoon, Hee-jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.131-135
    • /
    • 2018
  • The heart disease taking the second place of the cause of the death of modern people is a terrible disease that makes sudden death without noticing. To judge the aortic valve disease of heart diseases a name of disease was diagnosed using psychological data provided from physioNet. Aortic valve is a valve of the area that blood is spilled from left ventricle to aorta. Aortic stenosis of heart troubles is a disease when the valve does not open appropriately in contracting the left ventricle to aorta due to narrowed aortic valve. In this paper, 3126 samples of cardiac sound data were used as an experiment data composed of 180 characteristics including normal people and aortic valve stenosis patients. To diagnose normal and aortic valve stenosis patients, NEWFM was utilized. By using an average method of weight as an feature selection method of NEWFM, the result shows 91.0871% accuracy.

Sleep Disturbance Classification Using PCA and Sleep Stage 2 (주성분 분석과 수면 2기를 이용한 수면 장애 분류)

  • Shin, Dong-Kun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • This paper presents a methodology for classifying sleep disturbance using electroencephalogram (EEG) signal at sleep stage 2 and principal component analysis. For extracting initial features, fast Fourier transforms(FFT) were carried out to remove some noise from EEG signal at sleep stage 2. In the second phase, we used principal component analysis to reduction from EEG signal that was removed some noise by FFT to 5 features. In the final phase, 5 features were used as inputs of NEWFM to get performance results. The proposed methodology shows that accuracy rate, specificity rate, and sensitivity were all 100%.