• 제목/요약/키워드: NEURAL

검색결과 15,016건 처리시간 0.034초

Deep Learning을 위한 GPGPU 기반 Convolution 가속기 구현 (An Implementation of a Convolutional Accelerator based on a GPGPU for a Deep Learning)

  • 전희경;이광엽;김치용
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.303-306
    • /
    • 2016
  • 본 논문에서는 GPGPU를 활용하여 Convolutional neural network의 가속화 방법을 제안한다. Convolutional neural network는 이미지의 특징 값을 학습하여 분류하는 neural network의 일종으로 대량의 데이터를 학습해야하는 영상 처리에 적합하다. 기존의 Convolutional neural network의 convolution layer는 다수의 곱셈 연산을 필요로 하여 임베디드 환경에서 실시간으로 동작하기에 어려움이 있다. 본 논문에서는 이러한 단점을 해결하기 위하여 winograd convolution 연산을 통하여 곱셈 연산을 줄이고 GPGPU의 SIMT 구조를 활용하여 convolution 연산을 병렬 처리한다. 실험은 ModelSim, TestDrive를 사용하여 진행하였고 실험 결과 기존의 convolution 연산보다 처리 시간이 약 17% 개선되었다.

신경회로망을 이용한 직류전동기의 센서리스 속도제어 (Sensorless Speed Control of Direct Current Motor by Neural Network)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

오차 자기 순환 신경회로망을 이용한 현가시스템 인식과 슬라이딩 모드 제어기 개발 (Identification of suspension systems using error self recurrent neural network and development of sliding mode controller)

  • 송광현;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.625-628
    • /
    • 1997
  • In this paper the new neural network and sliding mode suspension controller is proposed. That neural network is error self-recurrent neural network. For fast on-line learning, this paper use recursive least squares method. A new neural networks converges considerably faster than the backpropagation algorithm and has advantages of being less affected by the poor initial weights and learning rate. The controller for suspension systems is designed according to sliding mode technique based on new proposed neural network.

  • PDF

A Learning Algorithm of Fuzzy Neural Networks with Trapezoidal Fuzzy Weights

  • Lee, Kyu-Hee;Cho, Sung-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.404-409
    • /
    • 1998
  • In this paper, we propose a learning algorithm of fuzzy neural networks with trapezoidal fuzzy weights. This fuzzy neural networks can use fuzzy numbers as well as real numbers, and represent linguistic information better than standard neural networks. We construct trapezodal fuzzy weights by the composition of two triangles, and devise a learning algorithm using the two triangular membership functions, The results of computer simulations on numerical data show that the fuzzy neural networks have high fitting ability for target output.

  • PDF

공장 자동화에 적용되는 Neural Networks의 기술동향 및 전망 (Technical Trend and View of Neural Networks for Factory Automation)

  • 이진섭;하재헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.892-895
    • /
    • 1991
  • In this study, it has been refering that disposal of rapidly international information society and artificial intelligence neural networks of the vanguard software technology. This paper is human brain cell structure modeling in order to neural networks realization for order language and computer embodiment of parallel processing. And it is shown that the usage extreme of time saving and correct judgement for business services, Overviews some of the currently popular neural networks architectures, and describes the current state of the neural networks technology.

  • PDF

Process Control Using n Neural Network Combined with the Conventional PID Controllers

  • Lee, Moonyong;Park, Sunwon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.196-200
    • /
    • 2000
  • A neural controller for process control is proposed that combines a conventional multi-loop PID controller with a neural network. The concept of target signal based on feedback error is used fur on-line learning of the neural network. This controller is applied to distillation column control to illustrate its effectiveness. The result shows that the proposed neural controller can cope well with disturbance, strong interactions, time delays without any prior knowledge of the process.

  • PDF

적응 뉴럴 컴퓨팅 방법을 이용한 동적 시스템의 특성 모델링 (Characteristics Modeling of Dynamic Systems Using Adaptive Neural Computation)

  • 김병호
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.309-314
    • /
    • 2007
  • This paper presents an adaptive neural computation algorithm for multi-layered neural networks which are applied to identify the characteristic function of dynamic systems. The main feature of the proposed algorithm is that the initial learning rate for the employed neural network is assigned systematically, and also the assigned learning rate can be adjusted empirically for effective neural leaning. By employing the approach, enhanced modeling of dynamic systems is possible. The effectiveness of this approach is veri tied by simulations.

퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기 (Force controller of the robot gripper using fuzzy-neural fusion)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

뇌세포형 컴퓨터 시스템 (Neural computer systems)

  • 김성수;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.552-555
    • /
    • 1988
  • In this paper, the authors introduce the concepts of neural computer systems which have been studied over 25 years in other countries. And also we illustrate the models of neural networks suggested by researchers. Our fundamental hypothesis is that these models are applicable to the construction of artificial neural systems including neural computers. Therefore we assume that neural computer systems are abstract computer systems based on the computational properties of human brains and particularly well suited for problems in vision and language understanding.

  • PDF

Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches

  • Ghaboussi, Jamshid;Wu, Xiping
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.955-969
    • /
    • 1998
  • Engineering problems are inherently imprecision tolerant. Biologically inspired soft computing methods are emerging as ideal tools for constructing intelligent engineering systems which employ approximate reasoning and exhibit imprecision tolerance. They also offer built-in mechanisms for dealing with uncertainty. The fundamental issues associated with engineering applications of the emerging soft computing methods are discussed, with emphasis on neural networks. A formalism for neural network representation is presented and recent developments on adaptive modeling of neural networks, specifically nested adaptive neural networks for constitutive modeling are discussed.