• Title/Summary/Keyword: NEMA Phantom

Search Result 68, Processing Time 0.035 seconds

An Initial Study on the Reliability Assurance in PET/CT Standardized Uptake Values (PET/CT 에서 표준섭취계수(SUV)의 신뢰성 확보를 위한 초기연구)

  • Park, Hoon-Hee;Kim, Jung-Yul;Lee, Seung-Jae;Park, Min-Soo;NamKoong, Hyuk;Lim, Han-Sang;Oh, Ki-Baek;Kim, Jae-Sam;Lee, Chang-Ho;Jin, Gye-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.31-42
    • /
    • 2009
  • Purpose: As the number of domestic medical institutions installing PET/CT is increasing rapidly, the transfer of PET/CT images among medical institutions is also increasing. Thus, it is necessary to collect the comparative SUV data from several medical institutions' PET/CT systems through a phantom study which semi-quantitatively compares the SUV on one bed, the change scale of the SUV on the slices, and the time of measuring. The phantom study to find differences among the SUVs from various PET/CT offers the opportunity to obtain the reliability of the SUV in PET/CT images. Materials and Methods: Ten PET/CT systems from medical institutions in Korea were used. To obtain the accurate data, the study has been using the radiation detector of Korea Research Institute of Standards and Science to verify. The internal structures of NEMA $phantom^{TM}$ were removed and Six thousand milliliters of distilled water which has 1mCi of $^{18}F$-FDG put into the phantom. The water was properly integrated with $^{18}F$-FDG using magnetic stirrer. The images were acquired at 60, 70, 80, 90, 100, 110 and 120-minutes for 3 minute each. Two hundred square centimeters of region of interests were placed and analyzed. To confirm the usefulness, the correction-table came out from patients' data. Results: The coefficient of variability of the SUV from -11.0 to 9.90 % fell into the range of international standards(${\pm}10%$) along with the SUV on a bed, the change scale of the SUV on the slices, and the time of measuring, except one PET/CT system. Using the data of the differences among the SUVs, we came to withdraw the correction-table ranging from 0.803 to 1.246. The correction-table was confirmed its usefulness through Linear Regression Analysis which was applied to normal cases. Conclusions: Although studies have been made on the variation of the SUV, there is little attention on the standardization of the SUV. Based on this study of the quantitatively comparable data about the SUV accommodating the correction-table, it would help to have more corrective diagnosis.

  • PDF

Comparative Volume Measuring Methods According to the Tumor Characters in PET/CT (PET/CT 검사에서 종양의 특성에 따른 체적 측정 방법 비교)

  • Choi, Yong Hoon;Ban, Yung Gak;Oh, Shin Hyun;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.52-58
    • /
    • 2016
  • Purpose Recent retrospective studies are being actively conducted to analyze the survival of patients with SUVmax, MTV, TLG, such as information from a variety of PET originating. However, there is no clear way is difficult to accurately measure the volume of the tumor may be the difference between the caster is raised. In this study, to evaluate compare the volume measuring methods according to the characteristics of the tumor. Materials and Methods 18F-saline to fill the NEMA IEC Body Phantom insert the volume of balance and imbalance in phantom were acquired to the Biograph truepoint 40 (Siemens medical system, Germany) PET/CT scanner. The ratio of the volume and Background was acquired as 3.0, 5.0, 8.0, 18, 40. Clinical patients were randomly selected 120 people in staging patients with cancer of the digestive system from the year 2010 until the year 2014. Measurement methods were used a 40% threshold, 50% threshold and gradient segmentation technique, i.e. PET EDGE. Five years of experience of the two radio-technologist and one doctor was measured by repeated three times. Analysis methods were Intraclass correlation coefficient and Pearson correlation. Results In Phantoms, the 40% threshold method gave the best concordance between measured and actual volumes (r = 0.992, 0.997). In clinical patient outcome agreement between observers EDGE it is as high as 0.999 (CI: 0.998-0.999). And there were no statistical significance of the difference between the measurements (P = 0.620). 40% threshold method showed the best correlation between the measurements (r = 0.953). Increasing the ratio of tumor to background decreased the influence of a measuring method. Conclusion How to measure volume of the tumor in the patient was clinically most useful is 50% and the lowest impact on the characteristics of the tumor. Therefore, to reduce the background of the patients in PET/CT scan, it should be required research and effort.

  • PDF

The Usability Evaluation According to the Application of Bismuth Shields in PET/CT Examination (PET/CT 검사에서 비스무스(bismuth) 차폐체의 적용에 따른 유용성 평가)

  • Nam-Kung, Sik;Kim, Ji Hyeon;Lee, Ju young;Park, Hoon Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • Purpose: Recently with CT developed, various studies for reduction of exposure dose is underway. Study of bismuth shields in these studies is actively underway, and has already been applied in the clinical. However, the application of the PET/CT examination was not activated. Therefore, through this study, depending on the application of bismuth shields in the PET/CT examination, we want to identify the quality of the image and the impact on the SUV. Materials and Methods: In this study, to apply to the shielding of the breast, by using the bismuth shields that contains 0.06 mmPb ingredients, was applied to the PET/CT GEMINI TF 64 (Philips Healthcare, Cleveland, USA). Phantom experiments using the NEMA IEC Body Phantom, images were acquired according to the presence or absence of bismuth shields apply. Also, When applying, images were obtained by varying the spacing 0, 1, 2 cm each image set to the interest range in the depth of the phantom by using EBW-NM ver.1.0. Results: When image of the PET Emission acquires, the SUV was in increased depending on the use of bismuth shields, difference in the depth to the surface from deep in the phantom increasingly SUV increased (P<0.005). Also, when using shields, as the more gab decreased, SUV is more increased (P<0.005). Conclusion: Through this study, PET/CT examination by using of bismuth shields which is used as purpose of reduction dose be considered. When using shields, the difference of SUV resulting from the application of bismuth shields exist and that difference is more decreased as gab of shields and surface is wider. Therefore, setting spacing of shield should be considered, if considering the reduction of the variation of SUV and image quality, disease of deep or other organs should be a priority rather than superficial disease. Through this study, when applying identified to clinical examination, the reduction of unnecessary exposure is considered.

  • PDF

The evaluate the usefulness of various CT kernel applications by PET/CT attenuation correction (PET/CT 감쇠보정시 다양한 CT Kernel 적용에 따른 유용성 평가)

  • Lee, Jae-Young;Seong, Yong-Jun;Yoon, Seok-Hwan;Park, Chan-Rok;Lee, Hong-Jae;Noh, Kyung-Wun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.37-43
    • /
    • 2017
  • Purpose Recently PET/CT image's attenuation correction is used CTAC(Computed Tomgraphy Attenuation Correction). it can quantitative evaluation by SUV(Standard Uptake Value). This study's purpose is to evaluate SUV and to find proper CT kernel using CTAC with applied various CT kernel to PET/CT construction. Materials and Methods Biograph mCT 64 was used for the equipment. We were performed on 20 patients who had examed at our hospital from february through March 2017. Using NEMA IEC Body Phantom, The data was reconstructed PET/CT images with CTAC appiled various CT kernel. ANOVA was used to evaluated the significant difference in the result. Results The result of measuring the radioactivity concentration of Phantom was B45F 96% and B80F 6.58% against B08F CT kernel, each respectively. the SUVmax increased to B45F 0.86% and B80F 6.54% against B08F CT kernel, In case of patient's parts data, the Lung SUVmax increased to B45F 1.6% and B80F 6.6%, Liver SUVmax increased to B45F 0.7% and B80F 4.7%, and Bone SUVmax increased to B45F 1.3% and B80F 6.2%, respectively. As for parts of patient's about Standard Deviation(SD), the Lung SD increased to B45F 4.2% and B80F 15.4%, Liver SD increased to B45F 2.1% and B80F 11%, and Bone SD increased to B45F 2.3% and B80F 14.7%, respectively. There was no significant difference discovered in three CT kernel (P >.05). Conclusion When using increased noise CT kernel for PET/CT reconstruction, It tends to change both SUVmax and SD in ROI(region of interest), Due to the increase the CT kernel number, Sharp noise increased in ROI. so SUVmax and SD were highly measured, but there was no statistically significant difference. Therefore Using CT kernel of low variation of SD occur less variation of SUV.

  • PDF

Consideration of Standardized Uptake Value (SUV) According to the Change of Volume Size through the Application of Astonish TF Reconstruction Method (Astonish TF 재구성 기법의 적용을 통한 체적 크기의 변화에 따른 표준섭취계수(SUV)에 관한 고찰)

  • Lee, Juyoung;Nam-Kung, Sik;Kim, Ji-Hyeon;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.115-121
    • /
    • 2014
  • Purpose: In addition to improving the quality of the PET image, through much research, the development of various programs are performed. Astonish TF reconstruction techniques by Philips can confirm the improved contrast of the lesion. Also, It's image reconstruction of 2 mm is possible with rapid reconstruction rate than conventional. In this study, we compared and evaluated Standardized Uptake Value (SUV) in accordance with the 2 mm reconstruction techniques and traditional 4 mm from the $^{18}F-FDG$ PET whole body image. Materials and Methods: In the phantom experiment, NEMA IEC body phantom (sphere: 10, 13, 17, 22, 28, 37 mm) was used to obtain images by using GEMINI TF 64 PET/CT (Philips, Cleveland, USA). Also, In the clinical images, we performed $^{18}F-FDG$ PET/CT examination to 30 women (age: $55.1{\pm}11.3$, BMI: $24.1{\pm}2.9$) with a diagnosis of breast cancer. After that, we reconstructed images in 2 mm and 4 mm respectively. The region of interest was drawn to acquired images. Since then, we measured SUV and statistically analyzed with SPSS ver.18 by using EBW (Extended Brilliance Workstation) NM ver.1.0. Results: After analyzing the result of the phantom study, there was a tendency that the bigger hot sphere size, the higher SUV. If you compared the 2 mm reconstruction techniques to 4 mm, it increased 95.78% in 10 mm, 50.60% in 13 mm, 25.00% in 17 mm, 30.04% in 22 mm, 31.81% in 28 mm, and 27.84% in 37 mm. Through the result of the analysis of the 2 mm reconstruction techniques and 4 mm in clinical images, it appeared that SUV of 2 mm was higher than that of 4 mm. Also the smaller the volume was, the more the change rate increased. Conclusion: After analyzing the result of the clinical picture and phantom experiments applied by Astonish TF reconstruction techniques, as the size of the volume was small, the change rate of the SUV increased. Therefore, it was necessary to further research about the SUV correction for accurate and active utilization of 2 mm reconstruction techniques which had excellent lesion discrimination ability and contrast in clinic.

  • PDF

The Evaluation of Attenuation Difference and SUV According to Arm Position in Whole Body PET/CT (전신 PET/CT 검사에서 팔의 위치에 따른 감약 정도와 SUV 변화 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Purpose: For better PET imaging with accuracy the transmission scanning is inevitably required for attenuation correction. The attenuation is affected by condition of acquisition and patient position, consequently quantitative accuracy may be decreased in emission scan imaging. In this paper, the present study aims at providing the measurement for attenuation varying with the positions of the patient's arm in whole body PET/CT, further performing the comparative analysis over its SUV changes. Materials and Methods: NEMA 1994 PET phantom was filled with $^{18}F$-FDG and the concentration ratio of insert cylinder and background water fit to 4:1. Phantom images were acquired through emission scanning for 4min after conducting transmission scanning by using CT. In an attempt to acquire image at the state that the arm of the patient was positioned at the lower of ahead, image was acquired in away that two pieces of Teflon inserts were used additionally by fixing phantoms at both sides of phantom. The acquired imaged at a were reconstructed by applying the iterative reconstruction method (iteration: 2, subset: 28) as well as attenuation correction using the CT, and then VOI was drawn on each image plane so as to measure CT number and SUV and comparatively analyze axial uniformity (A.U=Standard deviation/Average SUV) of PET images. Results: It was found from the above phantom test that, when comparing two cases of whether Teflon insert was fixed or removed, the CT number of cylinder increased from -5.76 HU to 0 HU, while SUV decreased from 24.64 to 24.29 and A.U from 0.064 to 0.052. And the CT number of background water was identified to increase from -6.14 HU to -0.43 HU, whereas SUV decreased from 6.3 to 5.6 and A.U also decreased from 0.12 to 0.10. In addition, as for the patient image, CT number was verified to increase from 53.09 HU to 58.31 HU and SUV decreased from 24.96 to 21.81 when the patient's arm was positioned over the head rather than when it was lowered. Conclusion: When arms up protocol was applied, the SUV of phantom and patient image was decreased by 1.4% and 9.2% respectively. With the present study it was concluded that in case of PET/CT scanning against the whole body of a patient the position of patient's arm was not so much significant. Especially, the scanning under the condition that the arm is raised over to the head gives rise to more probability that the patient is likely to move due to long scanning time that causes the increase of uptake of $^{18}F$-FDG of brown fat at the shoulder part together with increased pain imposing to the shoulder and discomfort to a patient. As regarding consideration all of such factors, it could be rationally drawn that PET/CT scanning could be made with the arm of the subject lowered.

  • PDF

Standard Performance Measurements of GE $Advance^{TM}$ Positron Emission Tomography (GE $Advance^{TM}$ 양전자방출단층촬영기의 표준 성능평가)

  • Jeong, Ha-Kyu;Kim, Hee-Joung;Son, Hye-Kyung;Bong, Jung-Kyun;Jung, Hai-Jo;Jeon, Tae-Joo;Kim, Jae-Sam;Lee, Jong-Doo;Yoo, Hyung-Sik
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.2
    • /
    • pp.100-112
    • /
    • 2001
  • Purpose: The purpose of this study was to establish optimal imaging acquisition conditions for the GE $Advance^{TM}$ PET imaging system by performing the acceptance tests designed by National Electrical Manufacturers Association (NEMA) protocol and General Electric Medical Systems (GEMS) test procedures. Materials and Methods: Performance tests were carried out with $^{18}FDG$ radioactivity source and phantoms by using a standard acquisition mode. Transaxial resolution and scatter traction tests were performed with a line source and axial resolution with a point source, respectively. A cylindrical phantom made of polymethylmethacrylate (PMMA) was used to measure sensitivity, count rate losses and randoms, uniformity correction, and attenuation inserts were added to measure remaining tests. The test results were acquired in a diagnostic acquisition mode and analyzed mainly on high sensitivity mode. Results: Transaxial resolution and axial resolution were measured as average of 4.65 mm and 3.98 mm at 0 cm, and 6.02 mm and 6.71 mm at 20 cm on high sensitivity mode, respectively. Average scatter fraction was 9.87%, and sensitivity was $225.8kcps/{\mu}Ci/cc$ of trues. Activity at 50% deadtime was $4.6{\mu}Ci/cc$, and the error of count rate correction at that activity was from 1.49% to 3.83%. Average nonuniformity for total slice w3s 8.37%. The accuracy of scatter correction was -0.95%. The accuracies of attenuation correction were 5.68% for air, 0.04% for water and -6.51% for polytetrafluoroethylene (PTFE). Conclusion: The results satisfied most acceptance criteria, indicating that the GE $Advance^{TM}$ PET system can be optimally used for clinical applications.

  • PDF

Phantom Study of the Mutual Influences Between 18F-FDG and 99mTcO4- on the Same Day (18F-FDG와 99mTcO4-를 이용한 당일 검사 시 상호 영향에 대한 Phantom 연구)

  • Ham, Jun Cheol;Park, Min Soo;Bahn, Young Kag;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.68-72
    • /
    • 2014
  • Purpose The nuclear medicine examination, there is a difficulty to carry out the inspection of both on the day of residual isotope due to the half-life. In this study, by studying the mutual influence and $^{18}F$-FDG of $^{99m}TcO_4{^-}$, I would like to explain the matters to be considered in the case of performing the same day. Materials and Methods With the NEMA-1994 Phantom, and experiments were performed 3 times. Create a 1: 4 Background ratio HOT and the $^{99m}TcO_4{^-}$ The first experiment: After underwent SPECT in INFINIA (GE Healthcare, MI, USA), and were injected with $^{18}F$-FDG 37 MBq in the Background area, 13 once for 60 minutes under the same conditions was time Scan. Create a 1: 4 Background ratio HOT and the $^{18}F$-FDG second is: The Scan in PET/CT Discovery 600 (GE Healthcare, MI, USA), and 148 MBq after injection $^{99m}TcO_4{^-}$ the Background area, once for 60 minutes, 6 under the same conditions was time Scan. Create a 1: 4 Background ratio HOT and the $^{18}F$-FDG experiments las, increments of 296 MBq and 148 MBq the 1 Bed Scan after $^{99m}TcO_4{^-}$, was 1 Bed Scan under the same conditions. Non BKG area and HOT, I was measured comparing the Total Counts and SNR or CNR. Results Showed a significant difference in the ratio CNR of enforcement during SPECT $^{18}F$-FDG is, (p>0.05). The $^{99m}TcO_4{^-}$ was no significant difference between the SNR ratio of PET / CT at the time of the effective date (p<0.05). I got the results $^{99m}TcO_4{^-}$ that reduce the Total Counts of PET / CT scan. Conclusion If you make a PET / CT scan, may affect the test using the $^{99m}TcO_4{^-}$ up to 12 hours, when it is performed before the $^{99m}TcO_4{^-}$, does not affect the SNR and SUV, PET / CT scan I reduced the detection efficiency. The inspection of day, we'd like to recommend a way to complement the detection efficiency to increase the inspection time of PET / CT in move forward the inspection using the $^{99m}TcO_4{^-}$.

  • PDF

Comparative Evaluation for the Effect of SUV's Due to a Residual Radio-activity Location Inside Vascular Insert Devices During PET/CT Scans (PET/CT 검사 시 혈관삽입기구 내 잔여 방사능 위치에 따른 표준섭취계수의 영향 비교 평가)

  • Sim, Woo Yong;Kim, Jung Yul;Cho, Suk Won;Oh, Shin Hyun;Lim, Han Sang;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.94-97
    • /
    • 2014
  • Purpose: Standardized uptake value (SUV) is a simple semi-quantitative method that can measure the ratio of the tissue radioactivity between the tumor and normal. SUV is commonly used in PET/CT, however, SUV is affected by various factor. The purpose of this study was to evaluate the impact of the residual activity on SUV depending on the location of catheter insertion device post injection. Materials and Methods: NEMA IEC Body Phantom was imaged using a Discovery 600 PET scanner. In 22 mm diameter sphere, the different activity of $^{18}F-FDG$ (7.4, 14.8, 22.2, 29.6, 37, 55.5 MBq) was filled and background was filled with $^{18}F-FDG$ (5.7 kBq/mL). We scaned the phantom on the assumption that the radioactivity in sphere was residual activity in insertion device. Simulation of PET was divided into three groups based on the location of sphere in Scan FOV (SFOV); inclusion, 1/2 inclusion and exclusion group. Results: Among three groups, the group of excluded sphere showed the highest SUV regardless of the amount of $^{18}F-FDG$ activity. In case of 7.4 MBq, average SUV of inclusion group, 1/2 inclusion and exclusion group was 0.780, 0.840 and 0.896 respectively. However, average SUV of 55.5 MBq showed 0.372, 0.460 and 0.508 with same order. Depend on residual radioactivity in the sphere and position of sphere, the SUV was different minimum of 10.4%, maximum of 62.8%. Conclusion: This study showed that SUV is underestimated as the residual radio-activity is increased. In addition, SUV was a changed according to the position of residual radio-activity. And among the position, exclusion group showed the difference of SUV was lowest. If we measure the residual radio-activity of inserting devices and radio-activity from extra-vasation in the patients, it seems to be more useful in clinical field.

  • PDF

Performance Evaluation of Reconstruction Algorithms for DMIDR (DMIDR 장치의 재구성 알고리즘 별 성능 평가)

  • Kwak, In-Suk;Lee, Hyuk;Moon, Seung-Cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.29-37
    • /
    • 2019
  • Purpose DMIDR(Discovery Molecular Imaging Digital Ready, General Electric Healthcare, USA) is a PET/CT scanner designed to allow application of PSF(Point Spread Function), TOF(Time of Flight) and Q.Clear algorithm. Especially, Q.Clear is a reconstruction algorithm which can overcome the limitation of OSEM(Ordered Subset Expectation Maximization) and reduce the image noise based on voxel unit. The aim of this paper is to evaluate the performance of reconstruction algorithms and optimize the algorithm combination to improve the accurate SUV(Standardized Uptake Value) measurement and lesion detectability. Materials and Methods PET phantom was filled with $^{18}F-FDG$ radioactivity concentration ratio of hot to background was in a ratio of 2:1, 4:1 and 8:1. Scan was performed using the NEMA protocols. Scan data was reconstructed using combination of (1)VPFX(VUE point FX(TOF)), (2)VPHD-S(VUE Point HD+PSF), (3)VPFX-S (TOF+PSF), (4)QCHD-S-400((VUE Point HD+Q.Clear(${\beta}-strength$ 400)+PSF), (5)QCFX-S-400(TOF +Q.Clear(${\beta}-strength$ 400)+PSF), (6)QCHD-S-50(VUE Point HD+Q.Clear(${\beta}-strength$ 50)+PSF) and (7)QCFX-S-50(TOF+Q.Clear(${\beta}-strength$ 50)+PSF). CR(Contrast Recovery) and BV(Background Variability) were compared. Also, SNR(Signal to Noise Ratio) and RC(Recovery Coefficient) of counts and SUV were compared respectively. Results VPFX-S showed the highest CR value in sphere size of 10 and 13 mm, and QCFX-S-50 showed the highest value in spheres greater than 17 mm. In comparison of BV and SNR, QCFX-S-400 and QCHD-S-400 showed good results. The results of SUV measurement were proportional to the H/B ratio. RC for SUV is in inverse proportion to the H/B ratio and QCFX-S-50 showed highest value. In addition, reconstruction algorithm of Q.Clear using 400 of ${\beta}-strength$ showed lower value. Conclusion When higher ${\beta}-strength$ was applied Q.Clear showed better image quality by reducing the noise. On the contrary, lower ${\beta}-strength$ was applied Q.Clear showed that sharpness increase and PVE(Partial Volume Effect) decrease, so it is possible to measure SUV based on high RC comparing to conventional reconstruction conditions. An appropriate choice of these reconstruction algorithm can improve the accuracy and lesion detectability. In this reason, it is necessary to optimize the algorithm parameter according to the purpose.