• Title/Summary/Keyword: NEMA Phantom

Search Result 68, Processing Time 0.032 seconds

Evaluation of Image Quality Using CT Attenuation Correction in SPECT/CT (SPECT/CT에서 CT감쇠보정에 따른 영상의 질 평가)

  • Cho, Sung Wook;Kim, Gye Hwan;Sung, Yong Joon;Lee, Hyung Jin;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.78-83
    • /
    • 2013
  • Purpose: SPECT/CT, a combination of SPECT and CT, is capable of expressing the results of attenuation correction on images biased by automatic program. As a result, this research evaluates the usefulness of images with CT attenuation correction, using various phantoms and images of patients. Materials and Methods: From July of 2012 to September of 2012, this research was conducted on the contrast, spatial resolution, and images of patients. We studied the contrast with IEC body phantom and Jaszczak phantom, while the spatial resolution was evaluated with NEMA triple line phantom. Further, a comparative study was carried out on the quality of the images, on the difference between the images before and after the CT attenuation correction. Results: Compared the differences between the contrast before and after the CT attenuation correction in IEC body phantom. The contrast was improved by 33.6% at minimum, 89.8% at maximum. In case of Jaszczak Phantom, the contrast was enhanced by 9.9% at minimum, 27.8% at maximum. In NEMA Triple line phantom, the resolution was raised by 4.5% in average: 4.4% in horizontal, 4.5% in vertical. In Anthropomorphic Torso Phantom, the perfusion score of the interior wall with the most severe attenuation was measured to be 29.4%. In the experiment carried out on myocardial perfusion SPECT/CT patients, 9% improvement was discovered in the interior wall, where the most dramatic attenuation occurred, after the CT attenuation correction. Conclusion: SPECT/CT proved its clinical usefulness by enabling the acquisition of images with enhanced contrast and spatial resolution compare to the ones resulted from SPECT.

  • PDF

The Comparison Evaluation of SUV Using Different CT Devices in PET/CT Scans (PET 검사에서 CT 장비의 차이에 따른 PET/CT의 SUV 비교 평가)

  • Kim, Woo Hyun;Go, Hyeon Soo;Lee, Jeong Eun;Kim, Ho Sung;Ryu, Jae Kwang;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Purpose: Among different PET/CT devices which are composed of same PET model but different CT models, SUV, usually used for quantitative evaluation, was measured to assess the accuracy of follow up scans in different PET/CT and confirm that interequipment compatibility is useful in arranging the PET/CT exam appointment. Materials and Methods: Using ACR PET Phantom, PET NEMA IEC Body Phantom, SNM Chest Phantom and Ge-68 cylinder Phantom, $SUV_{mean}$ and $SUV_{max}$ was measured by 3 different models of PET/CT (Discovery 690, Discovery 690Elite and Discovery 710, GE) made in same company. ANOVA was used to evaluate the significant difference in the result. Results: In the result, the average of $SUV_{max}$ was D690 (25 mm-1.82, 16 mm-1.75, 12 mm-1.73, 8 mm-1.44), D690E (25 mm-1.76, 16 mm-1.92, 12 mm-1.78, 8 mm-1.55) and D710 (25 mm-1.84, 16 mm-1.89, 12 mm-1.77, 8 mm-1.61) in ACR Phantom, D690 (25 mm-2.26, 16 mm-2.25, 12 mm-1.92, 8 mm-1.85), D690E (25 mm-2.45, 16 mm-2.25, 12 mm-2.05 8 mm-1.91) and D710(25 mm-2.49, 16 mm-2.20, 1 2mm-2.30, 8 mm-2.05) in PET NEMA IEC Body Phantom, D690-1.04, D690E-1.10 and D710-1.09 in SNM Chest Phantom and D690-0.81, D690E-0.81, D710-0.84 in Ge-68 cylinder Phantom. The differences between average SUV of 4 phantoms were $SUV_{mean}$-1.87%, $SUV_{max}$-2.15%. And also as a result of ANOVA analysis, there was no significant difference statistically. Conclusion: If different models of PET/CT have same specification of PET system, there was no significant difference in $SUV_{mean}$ and $SUV_{max}$ even though they have different CT system. And also differences of $SUV_{mean}$ and $SUV_{max}$ in phantom images were under 5% which many manufacturers recommend. Therefore, follow up scan will be possible using different PET/CT if it has same specification of PET system with the previous PET/CT. This information will enable the accurate comparative analysis when conducting follow up scans and be helpful to schedule PET/CT exam more effectively.

  • PDF

The Study of Influence on Reducing Exposure Dose According to the Applied Flat-panel CT in Extremity Bone SPECT/CT (상·하지 뼈 SEPCT/CT 검사에서 평판형 CT의 피폭저감 영향에 관한 고찰)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: With the demand of SPECT/CT increasing, the interest in complex diagnostic information of CT is rising along with the expansion of various studies on potential performance value. But the study on reduction of exposure dose generated by CT is not being conducted enough. Therefore, in this study, the goal is to identify how much dose reduction exists when performing the extremity bone SPECT/CT using the flat-panel CT. Materials and Methods: The extremity bone SPECT/CT was performed with two equipments -BrightView XCT (Philips Healthcare, Cleveland, USA) and Brilliance 16 CT (Philips Healthcare, Cleveland, USA)-to identify the exposed dose and image quality resulted by changing scan parameter (mAs) applying for both equipment respectively. The noise value of image and spatial resolution were measured with AAPM CT phantom. Tube voltage (kVp) was fixed to 120 kVp, tube current (mAs) calculated at different mA (20, 30, 40, 50, 60, 70, 80) was applied to both equipments respectively. DLP (dose length product) were calculated at the same distance at respective mAs. Also, we acquired images and % contrast with NEMA IEC body phantom to confirm the effect on image. The output of statistics was analyzed by SPSS ver.18. Results: Regarding AAPM phantom, the noise decreased as the tube current (mAs) increased and flat-panel had less noise than Helical CT. This difference increased at lower dose exposure. As to the evaluation of spatial resolution, we can differentiate the space up to 0.75 mm with both equipments. With scan parameter (mA) growing, the value of DLP increased up to 54-216 mGy cm at flat-panel CT and up to 177-709 mGy cm at Helical CT. Regarding NEMA IEC body phantom, same sphere with varied parameter (mA) shows that similar results. Conclusion: There is no significant differences of image quality in both flat-panel and Helical CT when the scan parameter (mA) is changed respectively. Moreover, we can identify the reduction of exposure dose and confirm %contrast analysis value with maintaining image quality. Therefore, at the extremity bone SPECT/CT requiring high spital resolution without the wide ROI, the flat-panel CT is considered to be more useful and it expected to result in the similar image quality with lower exposure dose compared to Helical CT. Additionally, through this study, we expect to help the reduction of the unnecessary exposure dose.

  • PDF

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

The Evaluation of TrueX Reconstruction Method in Low Dose (저선량에서의 TrueX 재구성 방법에 의한 유용성 평가)

  • Oh, Se-Moon;Kim, Kye-Hwan;Kim, Seung-Jeong;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.83-87
    • /
    • 2011
  • Purpose: Recently in diagnostics area PET/CT is using a variety of areas including oncology, as well as in cardiology, neurology, etc. While increasing in the importance of PET/CT, there are various researches in the image quality related to reconstruction method. We compared and tested Iterative 2D Reconstruction Method with True X Reconstruction method by Siemens through phantom experiment, so we can see increasing of clinical usefulness of PET/CT. Materials and Methods: We measured contrast ratio and FWHM due to evaluating images on dose and experiment using Biograph 40 True Point PET/CT (Siemens, Germany). Getting a result of contrast ratio and FWHM, we used NEMA IEC PET body phantom (Data Spectrum Corp.) and capillary tube. We used the current TrueX and the previous Iterative 2D algorithm for all images which have 10 minutes long. Also, a clinical suitability of parameter for Iterative 2D and a recommended parameter by Siemens for True X are applied to the experiment. Results: We tested FWHM using capillary tube. As a result, TrueX was less than Iterative 2D. Also, the differences of FWHM get bigger in low dose. On the other hand, we tested contrasts ratio using NEMA IEC PET body phantom. As a result, TrueX was better aspect than Iterative 2D. However, there was no difference in dose. Conclusion: In this experiment, TrueX get higher results of contrast ratio and spatial resolution than Itertive 2D through experiment. Also, in the reconstruction result through TrueX, TrueX had better aspect of resolution than Iterative 2D in low dose. However, contrast ratio had no specific difference. In other words, TrueX reconstruction method in PET/CT had higher clinical value in use because TrueX can reduce exposure of patient and had a better quality of screen.

  • PDF

Assessment and Comparison of SUVs of Three Different PET/CT Scanners (장비에 따른 SUV의 차이와 이에 관한 고찰)

  • Kim, Tae-Yeob;Lim, Jung-Jin;Lee, Hong-Jae;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Purpose: The SUV is a widely used semi-quantitative index in PET for the estimation of radio-tracer accumulation in VOI. In this study, SUVs from three different PET/CT scanners were assessed, and differences between SUVs were evaluated. Materials and Methods: The PET/CT scanners which were assessed in this study were GEMINI, GEMINI TF 64 (Philips) and Biograph True Point True V 40 (Siemens). The NEMA PET phantom (Data Spectrum Corp., USA) was used to evaluate SUVs. The NEMA PET phantom has6.8 kg weight and three hot inserts. Two different activity distributions for the background and inserts were tested. The activity ratio were 3.7:3.7:7.4:11.1 MBq (1:1:2:3) and 1.85:7.4:9.25:11.1MBq (1:4:5:6) for each of background, insert 1, insert 2 and insert 3. Acquisition time was 2 minutes per bed position and NEMA PET phantom could be covered by two bed positions for all PET/CT scanners. The SUVs from each PET/CT scanner were compared with calculated true value. Results: For both activity ratios, all scanners showed similar results. The differences between each scanner were insignificant. Each scanner showed 91.2%, 85.9% and 87.2% of true SUV for GEMINI, GEMINI TF 64, Biograph True Point TrueV, respectively. Conclusion: For all scanners, SUVs were slightly lower than true value. However, the difference between scanners was insignificant. The SUVs from these scanners would be clinically meaningful if their consistent underestimation is kept in mind.

  • PDF

The Study of Reducing Radiation Exposure Dose and Comparing SUV According to Applied IRIS (Iterative Reconstruction in Image Space) for PET/CT (PET/CT 검사 시 IRIS (Iterative Reconstruction in Image Space) 적용에 따른 CT 피폭선량 감소와 PET SUV 비교 연구)

  • Do, Yong Ho;Song, Ho Jun;Lee, Hyung Jin;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.29-34
    • /
    • 2012
  • Purpose : Presently, hardwares and softwares for reducing radiation exposure are continually developed for PET/CT examination. Purpose of this study is to evaluate effectiveness of reducing radiation exposure dose of CT and SUV changes of PET when applied each kernel to ACCT (Attenuation Correction Computed Tomography) according to adopted IRIS (Iterative Reconstruction in Image Space) software. Materials and Methods : Biograph mCT (Siemens, Germany) was used as a PET/CT scanner. Using AAPM CT performance phantom, from standard (120 kVp, 100 mAs), 7 scans were conducted by reducing 15 mAs each. After image reconstruction by FBP (Filtered Back Projection) and IRIS, noise and spatial resolution were evaluated. The same method was applied to anthropomorphic chest phantom and acquired images were compared. NEMA IEC body phantom was used for SUV evaluation. Injected dose rate for hot sphere (hot) and background cylinder (BKG) were 1:8. CT dose condition (120 kVp, 50 mAs) was the same for each scan and PET scan durations were 1, 2, 3 and 4min. After scanning, each kernel of IRIS was applied to ACCT. And PET images were reconstructed by ACCT adopted IRIS for comparing SUV changes. Results : AAPM phantom test for noise evaluation, SD for FBP 100 mAs, IRIS 55 mAs were 8.8 and 8.9. FBP 85 mAs, IRIS 40 mAs were 9.5 and 9.7. FBP 70 mAs, IRIS 25 mAs were 11.9 and 11.1. Above mAs condition for FBP and IRIS, SD showed similar values. And for spatial resolution test, there was no significant difference. For chest phantom test, when applied the same mAs and kernel to both of FBP and IRIS, every applied kernels showed reduced noise. Lower mAs and higher kernel value showed higher noise reduction. There was no considerable difference only except for I70 very sharp kernel for SUV comparison using NEMA IEC body phantom. Conclusion : In this study, low mAs (55 mAs) applied IRIS and standard mAs (100 mAs) applied FBP showed similar noise. And only except for I70 kernel, there was no significant SUV changes. It is possible to reduce needless radiation exposure and acquire better image quality than FBP's through applying appropriate kernel of IRIS to PET/CT.

  • PDF

Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT (PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가)

  • Choong-Woon Lee;Yeon-Wook You;Jong-Woon Mun;Yun-Cheol Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

Dose Reduction According to the Exposure Condition in Intervention Procedure : Focus on the Change of Dose Area and Image Quality (인터벤션 시 방사선조사 조건에 따른 선량감소 : 면적선량과 영상화질 변화를 중심으로)

  • Hwang, Jun-Ho;Jung, Ku-Min;Kim, Hyun-Soo;Kang, Byung-Sam;Lee, Kyung-Bae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.393-400
    • /
    • 2017
  • The purpose of this study is to suggest a method to reduce the dose by Analyzing the dose area product (DAP) and image quality according to the change of tube current using NEMA Phantom. The spatial resolution and low contrast resolution were used as evaluation criteria in addition to signal to noise ratio (SNR) and contrast to noise ratio (CNR), which are important image quality parameters of intervention. Tube voltage was fixed at 80 kVp and the amount of tube current was changed to 20, 30, 40, and 50 mAs, and the dose area product and image quality were compared and analyzed. As a result, the dose area product increased from $1066mGycm^2$ to $6160mGycm^2$ to 6 times as the condition increased, while the spatial resolution and low contrast resolution were higher than 20 mAs and 30 mAs, Spatial resolution and low contrast resolution were observed below the evaluation criteria. In addition, the SNR and CNR increased up to 30 mAs, slightly increased at 40 mAs, but not significantly different from the previous one, and decreased at 50 mAs. As a result, the exposure dose significantly increased due to overexposure of the test conditions and the image quality deteriorated in all areas of spatial resolution, low contrast resolution, SNR and CNR.

Analysis of Dosimeter Error and Need for Calibration Guideline by Comparing the Dose Area of the Built-in Dose Area Product and the Moving Dose Area Product when using Automatic Exposure Controller in Intervention (인터벤션에서 자동노출제어장치 이용 시 내장형 면적 선량계와 이동형 면적 선량계의 면적선량 비교를 통한 선량계 오차분석과 교정지침 필요성 연구)

  • Choi, Ji-An;Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.508-515
    • /
    • 2018
  • The purpose of this study was to analyze the errors of the built - in dose area product and the calibrated moving dose area product when using automatic exposure controller of the interventional equipment. And then, the importance of the dosimeter calibration and the necessity of the calibration guideline were investigated. The experimental method was to assemble the phantom into Thin, Normal, and Heavy Adult according to the NEMA Phantom manual and to measure the dose area with the built-in dose area product and the moving dose area product. As a result, in all thicknesses, the built-in dose area product showed higher doses than the moving dose area product, and the thicker the thickness, the larger the difference. In addition, paired t-test was performed for each item and there was a significant difference in each item between p<0.05. In conclusion, considering the intervention which is highly exposed to the radiation exposure, it is that we have to know the accurate dose when using the AEC of the equipment. And there is no calibration guide for the built-in dose area meter, thus calibration guidelines should be prepared.