• Title/Summary/Keyword: NEAT

Search Result 465, Processing Time 0.03 seconds

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration

  • Esfandian, Fatemeh;Peyravi, Majid;Qoreyshi, Ali Asqar;Jahanshahi, Mohsen
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.155-173
    • /
    • 2016
  • The present work has been focused on the development of polysulfone (PSf) ultrafiltration membrane via blending by sulfonated polyethersulfone (SPES) in order to permeability enhancement for ultrafiltration of cheese whey. In this regards, sulfonation of polyethersulfone was carried out and the degree of sulfonation was estimated. The effect of blend ratio on morphology, porosity, permeation and fouling of PSf / SPES membranes was investigated. Filtration experiments of whey were conducted for separation of macromolecules and proteins from the lactose enrichment phase. The morphology and performance of membranes were evaluated using different techniques such SEM, AFM, and contact angle measurements. The contact angle measurement showed that the hydrophilicity of membrane was increased by adding SPES. According to AFM images, PSf / SPES membranes exhibited lower roughness compared to neat PSf membrane. The water and whey flux of these membranes were higher than neat membrane. However, flux was decreased when the PSf / SPES blend ratio was 0/100. It can be attributed to pore size and morphology changes. Further, fouling parameters of PSf membrane were improved after blending. The blend membranes show a great potential to be used practically in proteins separation from cheese whey.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

Apparel Purchase Behaviors and Image Preferences of Preteen Girls and Their Mothers: Considering Preteen Girls' BMI and Body Image (프리틴 여아의 비만도와 신체이미지에 따른 프리틴 여아와 어머니의 의복구매특성과 의복선호이미지)

  • Moon, Hee-Kang
    • Journal of the Korean Home Economics Association
    • /
    • v.48 no.10
    • /
    • pp.37-49
    • /
    • 2010
  • The purpose of this study was to identify preteen girls and their mothers' apparel image preference and apparel purchase behavior. This study was particularly interested in verifying the influencing factors of plus size preteen girls' apparel choice by investigating the correlations between preteens' physical characteristic and their apparel related variables. Data were obtained from the questionnaire by 190 preteen girls and 120 mothers. The influential power of preteens on apparel purchase decision was greater than that of their mothers, and their preferred apparel images were comfortable/neat, cute/girlish, and mature/chic. Comparing to preteen girls, their mothers preferred comfortable/neat and cute/girlish images to mature/chic apparel image. Their physical maturity levels were significantly correlated with apparel image preference. Moreover, plus size preteen girls' interests in appearance and clothing was higher than that of normal weight preteen girls, this implied potentiality in apparel market for plus size preteen.

Studies on Cure Behavior and Thermal Stability of Epoxy/PMR-15 Polyimide Blend System (에폭시/PMR-15 폴리이미드 블렌드계의 경화동력학 및 열안정성에 관한 연구)

  • Lee, Jae-Rock;Lee, Hwa-Young;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.265-268
    • /
    • 2002
  • In this work, the blend system of epoxy and PMR-15 polyimide is investigated in terms of the cure behaviors and thermal stabilities. The cure behaviors are studied in DSC measurements and thermal stabilities are also carried out by TGA analysis. DDM (4, 4'-diamino diphenyl methane) is used as curing agent for EP and the content of PMR-15 is varied within 0, 5, 10, 35, and 20 phr to neat EP. As a result, the cure activation energy ($E_a$) is increased at 10 phr of PMR-15, compared with that of neat EP. From the TGA results of EP/PMR-15 blend system, the thermal stabilities based in the initial decomposed temperature (IDT) and integral procedural decomposition temperature (IPDT) are increased with increasing the PMR-15 content. The fracture toughness, measured in the context of critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$), shows a similar behavior with $E_a$. This result is probably due to the crosslinking developed by the interactions between intermolecules in the polymer chains.

  • PDF

Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum

  • Al-Rawajfeh, Aiman Eid;Alrawashdeh, Albara I.;Aldawdeyah, Asma;Hassan, Shorouq;Qarqouda, Ruba
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.35-49
    • /
    • 2013
  • Research work on removal of fluoride from water, referred to as water defluoridation, has resulted into the development of a number of technologies over the years but they suffer from either cost or efficiency drawbacks. In this work, enhancement effects of phosphate and silicate on defluoridation of water by low-cost Plaster of Paris (calcined gypsum) were studied. To our knowledge, the influence of silicate on defluoridation was not reported. It was claimed, that the presence of some ions in the treated water samples, was decreasing the fluoride removal since these ions compete the fluoride ions on occupying the available adsorption sites, however, phosphate and silicate ions, from its sodium slats, have enhanced the fluoride % removal, hence, precipitation of calcium-fluoro compounds of these ions can be suggested. Percentage removal of $F^-$ by neat Plaster is 48%, the electrical conductance (EC) curve shows the typical curve of Plaster setting which begins at 20 min and finished at 30 min. The addition of phosphate and silicate ions enhances the removal of fluoride to high extent > 90%. Thermodynamics parameters showed spontaneous fluoride removal by neat Plaster and Plaster-silicate system. The percentage removal with time showed second-order reaction kinetics.

Mechanical and Thermal Properties of Polypropylene/Wax/MAPP Composites Reinforced with High Loading of Wood Flour

  • Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Mohan, D. Jagan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.416-426
    • /
    • 2007
  • Polypropylene (PP) composites with wood flour/wax/coupling agent were manufactured by melt compounding and injection molding. The influence of wood flour(WF), wax, and coupling agent on the mechanical and thermal properties of the composites was investigated. The addition of wood flour to neat PP has the higher tensile modulus and strength compared with neat PP. The presence of wax also improved the tensile modulus. At the same loading of PP and WF, the addition of coupling agent highly decreased the tensile modulus, and increased the tensile strength. From thermogravimetric analysis (TGA), the addition of wax improved the thermal stability of the composites in the later stages of degradation. The presence of MAPP and wood flour in turn decreased thermal stabilities of composites. From differential scanning calorimetry analysis (DSC), neither the loading of wax. nor the presence of MAPP has shown significant effect on the thermal transition of composites.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

Non-edible Vegetable Oils for Alternative Fuel in Compression Ignition Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.49-58
    • /
    • 2009
  • Non-edible vegetable oils instead of edible vegetable oils as a substitute for diesel fuel are getting a renewed attention because of global reduction of green house gases and concerns for long-term food and energy security. Out of various non-edible vegetable oils, karanja, mahua, linseed, rubber seed and cotton seed oils are selected in this study. A brief review of recent works related to the application of the above five vegetable oils and its derivatives in CI engines is presented. The production technologies of biodiesel based on non-edible vegetable oils are introduced. Problems in vegetable oil or biodiesel fuelled CI engine are included. In addition, future works related to spray characteristics of non-edible vegetable oil or biodiesel from it are discussed. The biodiesel fuel, irrespective of the feedstock used, results in a decrease in the emission of hydrocardon (HC), carbon monoxide (CO), particulate matter (PM) and sulphur dioxide ($SO_2$). It is also said to be carbon neutral as it contributes no net carbon dioxide to the atmosphere. Only oxides of nitrogen (NOx) are reported to increase which is due to oxygen content in the biodiesel fuel. The systematic assessment of spray char-acteristics of neat vegetable oils and its blends, neat biodiesel and its blends f3r use as diesel engine fuels is required.

  • PDF