위성 주사 및 촬영자료는 지표면의 반사광을 다중분광 형태로 주사하여 기록된다. 그리나 각 밴드에 기록된 지표복사체의 반사치는 피복체의 분광특성만을 나타내기 보다는 태양고도 및 방위, 그리고 지형 등에 따른 방향성 영향이 포함되기 때문에 산림의 관리 및 이용을 위한 기초자료로 식생지수를 추정할 때에 오차의 범위를 넘어 오류가 발생한다. 따라서 동일 방향성 조건의 수종에 따른 고유 정규식생지수(Normalized Difference Vegetation Index, 이하 NDVI) 값을 구하기 위해서는 지형효과에 대한 보정이 필요하다. 본 연구에서는 QuickBird 다중분광(MS)자료 기반의 NDVI값을 사면향별로 분석하여 산림 NDVI의 방향성을 증명하였다.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.204-207
/
2008
The purpose of this study is to identify how much the MODIS NDVI (Normalized Difference Vegetation Index) can explain the soil moisture simulated from SWAT (Soil and Water Assessment Tool) continuous hydrological model. For the application, ChungjuDam watershed (6,661.3 $km^2$) was adopted which covers land uses of 82.2 % forest, 10.3 % paddy field, and 1.8 % upland crop respectively. For the preparation of spatial soil moisture distribution, the SWAT model was calibrated and verified at two locations (watershed outlet and Yeongwol water level gauging station) of the watershed using daily streamflow data of 7 years (2000-2006). The average Nash and Sutcliffe model efficiencies for the verification at two locations were 0.83 and 0.91 respectively. The 16 days spatial correlation between MODIS NDVI and SWAT soil moisture were evaluated especially during the NDVI increasing periods for forest areas.
본 연구는 토양의 수분 상태를 고해상으로 관측 및 분석하고 농업분야에의 응용 가능성을 평가하기 위한 연구이다. 이를 위하여 Landsat-8 OLI(Operational Land Imager)/TIRS(Thermal Infrared Sensor)의 광학 및 열적외선 위성영상을 연구자료로 전라북도 농업지역을 포함(연구자료 내 46%)하는 2015, 2016, 및 2017년 5-6월에 촬영된 영상 세 장을 이용하였다. 연구지역의 각 영상 촬영일의 토양의 수분 상태는 SPI(Standardized Precipitation Index)3 가뭄지수를 통하여 효과적으로 획득할 수 있으며, 각 영상은 보통, 습윤, 및 건조한 토양 수분 조건을 갖는다. 이러한 각기 다른 토양수분 조건을 갖는 영상을 대상으로 토양의 수분 상태를 관측하고 SPI3 가뭄지수로부터 획득한 토양의 수분 상태와 비교/분석을 수행기 위하여, TVDI(Temperature Vegetation Dryness Index)를 계산하였다. TVDI는 Landsat-8 OLI/TIRS 위성영상으로부터 계산한 LST(Land Surface Temperature) 및 NDVI(Normalized Difference Vegetation Index)의 관계로부터 추정하여 계산된다. LST-NDVI의 형상 공간 내 픽셀의 분포에서 NDVI에 따른 LST의 최대/최소값을 추출하고 이를 대상으로 각각 선형회귀분석(linear regression analysis)을 통하여 NDVI에 따른 LST의 Dry/Wet edge를 결정할 수 있으며, 최종적으로 NDVI에 따른 두 edge 사이에서의 LST 값의 비율을 계산하여 TVDI 값을 계산한다. TVDI 값으로부터 관측된 영상 내 상대적인 토양의 수분 상태를 매우 습윤, 습윤, 보통, 건조, 매우 건조의 5단계로 분류하여 SPI3로부터 획득한 각각의 토양수분 상태와 비교하였다. 연구자료 획득시기인 5-6월 시기의 특성상 모내기로 인하여 영상 내 가장 많은 비율을 차지하는 논 지역의 영향으로 영상 전체 중, 약 62% 이상이 습윤 및 매우 습윤한 상태로 분류되었다. 또한, 보통으로 분류되는 픽셀은 영상 내 밭 지역의 영향 때문으로 분석되었다. 영상 전체에 대해서는 대략적으로 SPI3의 토양수분 상태와 대응하였지만 매우 건조, 습윤, 및 매우 습윤에 해당하는 세분류 결과에서는 SPI3 토양수분 상태와 대응하지 않았다. 또한, 영상에서 논과 밭의 농업지역을 추출 및 분류한 후, SPI3 토양수분 상태와 비교하였을 때, 논 지역의 토양수분 상태 관측 분류 결과는 매우 건조, 보통 및 매우 습윤에서, 밭 지역은 보통의 분류에서만 SPI3 가뭄지수와 대응하지 않았다. 이는 매우 건조한 나지 및 매우 습윤한 모내기로 인한 논 지역, 수계, 구름 및 산지 지형효과 등의 이상치로 인하여 잘못된 Dry/Wet edge 추정의 문제로 사료되어진다. 그러나 5-6월 시기의 농업지역 중, 밭 지역에서는 세분류된 토양의 수분 상태를 효과적으로 관측할 수 있었다. 고해상 광학위성 기반 농업지역에 대한 토양수분 상태의 시 공간적 변화를 관측하여 농업지역의 농업생산량예측 등 그 응용이 가능할 것으로 사료된다.
The purpose of this study is to build a database of Spatial information Bigdata of cities using satellite images and spatial information, and to examine the correlations with the surface temperature. Using architectural structure and usage in building information, DEM and Slope topographical information for constructed with 300 × 300 mesh grids for Busan. The satellite image is used to prepare the Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BI), and Land Surface Temperature (LST). In addition, the building area in the grid was calculated and the building ratio was constructed to build the urban environment DB. In architectural structure, positive correlation was found in masonry and concrete structures. On the terrain, negative correlations were observed between DEM and slope. NDBI and BI were positively correlated, and NDVI was negatively correlated. The higher the Building ratio, the higher the surface temperature. It was found that the urban environment DB could be used as a basic data for urban environment analysis, and it was possible to quantitatively grasp the impact on the architecture and urban environment by adding local meteorological factors. This result is expected to be used as basic data for future urban environment planning and disaster prevention data construction.
Leaf area index (LAI) is important in explaining the ability of crops to intercept solar energy for biomass production, amount of plant transpiration, and in understanding the impact of crop management practices on crop growth. This paper describes a procedure for estimating LAI as a function of image-derived vegetation indices from temporal series of RapidEye imagery obtained from 2010 to 2012 using empirical models in a rice plain in Seosan, Chungcheongnam-do. Rice plants were sampled every two weeks to investigate LAI, fresh and dry biomass from late May to early October. RapidEye images were taken from June to September every year and corrected geometrically and atmospherically to calculate normalized difference vegetation index (NDVI). Linear, exponential, and expolinear models were developed to relate temporal satellite NDVIs to measured LAI. The expolinear model provided more accurate results to predict LAI than linear or exponential models based on root mean square error. The LAI distribution was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when RapidEye imagery was applied to expolinear model. The spatial trend of LAI corresponded with the variation in the vegetation growth condition.
최근 가뭄 모니터링을 위해 과거에 비하여 고해상도의, 물리적으로 기반을 두는 정보가 요구되고 있다. 기존에 주로 활용하고 있는 통계적 방법론 기반의 가뭄지수들은 지니고 있는 한계에 대해 여러 개선과정을 거치고 있으나, 기상변수로부터 지표상의 식생 관련 변수로의 전파 과정에 대한 개별 통계적 가뭄지수 간의 관계 설명이 매우 어렵다. 이와 같은 관계로, 국내 유역에서의 물리적 기반을 둔 고해상도 가뭄 판단방법에 대한 시도가 필요한 시점이다. Brown et al. (2008)은 위성기반 식생정보, 기상학적 가뭄지수, 지형학적 조건을 고려한 식생가뭄반응지수(Vegetation Drought Response Index; 이하 VegDRI)를 개발하였다. 학습자료에 대해 CART 기반의 경험적 모델을 구축하여, 격자마다 근-실시간 자료를 적용한 VegDRI를 산출하여 고해상도의 지도를 산출하는 방식을 제시하였다. VegDRI는 NCDC의 U.S. Drought Monitoring에 활용되고 있으며, NOAA의 Drought Task Force Assessment Protocol에서는 가뭄 모니터링의 기준으로 설정되어 있다. 본 연구에서는 국내에 VegDRI를 적용하고자 필요한 자료수집 및 전처리 과정을 거쳐 결과를 도출하였다. 기상청 ASOS 기상관측소에서 얻은 기상변수, MODIS 위성으로부터 추출된 정규식생지수(Normalized Difference Vegetation Index; NDVI), 지형학적 정보와 기상학적 가뭄지수(SPI, PDSI)를 기계학습으로 모델링하여 VegDRI를 산출하였다. 산출된 VegDRI 공간분포도에 대하여 기존에 활용되던 유관기관의 가뭄 판단방법과의 유사성과 차이점을 비교 검토하여 적용성을 평가하였다.
위성 영상을 활용하여 대규모 또는 정밀 토양 수분도를 제작하는 방법의 개발과 이를 적용한 사례 연구는 원격탐사 응용 분야에서 중요한 연구 주제 중 하나이다. 이 연구는 제주도 연구 지역을 대상으로 토양 수분도를 제작하였다. 이를 위하여 선형으로 조정된 Synthetic Aperture Radar (SAR) 편광 영상과 입사각 정보를 이용하여 광학 영상과 함께 토양 수분도를 산출하였다. SAR 영상은 Google Earth Engine (GEE)에서 제공하는 후반 산란 계수 Analysis Ready Data (ARD) 자료를 사용하였다. 또한 Environmental Systems Research Institute (ESRI)의 토지 피복도(land cover map)와 KOMPSAT-3 고해상도 위성 영상의 지표 반사도로부터 산출한 식생 지수 정보(normalized difference vegetation index, NDVI)를 토양 수분도 처리 과정에 적용하였다. 이처럼 SAR 영상과 광학영상 정보를 융합하여 처리하는 경우는 토양 수분 산출물의 신뢰도를 향상할 수 있는 것으로 알려져 있다. 산출물의 과학적 분석을 위하여 KOMPSAT-3 영상으로 제작한 정규 수분 지수(normalized difference water index, NDWI)와 비교 분석을 실시하였다. 그리고 KOMPSAT-3 처리 결과의 검증을 위하여 Landsat-8 위성의 NDWI 처리 결과와 비교하였다. 이 연구를 통하여 산출한 토양 수분도 결과는 KOMPSAT-3 영상과 Landsat-8 위성으로 각각 처리한 NDWI 처리 결과와 높은 상관도를 나타냈다. 마지막으로 이 연구에 사용한 토양 수분 산출 알고리즘을 우리나라 고해상도 위성인 KOMPSAT-5 영상에 맞게 추가 개발하면 다른 외부 영상 없이 KOMPSAT 광학 위성정보와 KOMPSAT SAR 영상정보를 이용한 정밀 토양 수분도 제작이 가능할 것이라고 생각한다.
작물 수확량의 정확하고 시기 적절한 추정은 세계적인 식량 안보 계획 및 농업 정책 개발을 포함하여 다양한 목적을 위해 중요하다. 원격 감지 기술은 특히 vegetation indices (VIs)를 활용한 작물 상태 모니터링과 예측에서 유망성을 보여주고 있다. 그러나 normalized difference vegetation index (NDVI) 와 enhanced vegetation index (EVI) 와 같은 전통적인 Vis는 식물광합성의 빠른 변화를 포착하는 데 제한이 있으며 작물 생산성을 정확하게 대표하지 못할 수 있다. 대체적인 Vis인 near-infrared reflectance of vegetation (NIRv)는 gross primary productivity (GPP)과 강한 상관관계를 가지며 빛이 반사할 때의 혼동을 해결하는 능력으로 인해 작물 생산량을 예측하는 더 나은 지표로 제안되었다. 연구 결과는 옥수수와 콩 모두에 대해 NIRv의 최댓값과 작물 수확량/면적 간에 유의한 상관관계가 있음을 입증했다. 이 상관관계는 콩에 대해 약간 더 강한 경향을 보였다. 게다가 대부분의 주요한 주에서는 NIRv의 최댓값과 생산량 간에 주목할 만한 관계가 있으며, 다양한 주에서 일관된 경사도를 보였다. 또한, 연간 데이터에서는 대부분의 값이 서로 밀접하게 군집되는 독특한 패턴을 관찰했다. 그러나 2012년은 다양한 주에서 독특한 작물 조건을 시사하는 이상값으로 나타났다. NIRv의 최댓값과 생산량 간의 확립된 관계를 기반으로, 우리는 2022년의 작물 수확량 데이터를 예측하고, 예측의 정확도를 Root Mean Square Percentage Error (RMSPE)를 사용하여 평가했다. 우리의 연구 결과는 지역별 작물 수확량 추정에 NIRv의 최댓값과 잠재력을 나타내며, 다양한 지역에서 정확도는 달라질 수 있다는 것을 보여줄 수 있다.
농작물은 그 종과 생육상태에 따라 민감한 분광특성을 나타내며, 특히 여름철에 집중적으로 관측이 필요하나 장마로 인해 광학위성의 활용이 어렵다. 이 문제를 해결하기 위해 CC-MNC(Constrained Cloud-Maximum NDVI Composite) 기법이 개발되었으며, 이 기법을 통해 구름의 영향이 최소화된 일정 주기의 대표 합성영상이 생성된다. 본 연구에서도 이 기법을 이용하여, 2019년부터 2021년까지 논과 고랭지 배추밭을 대상으로 Sentinel-2A/B NDVI 월합성영상을 제작하였다. 다른 해보다 200 mm 많은 강수량을 보이는 2020년 8월에는 16일 주기 MODIS NDVI합성영상에서도 구름의 영향이 크게 나타났다. 이 시기를 제외하고 CC-MNC 기법은 평균적으로 원영상의 45.4%의 구름 비율을 14.9%로 줄일 수 있었다. 논의 경우 Sentinel-2A/B와 MODIS NDVI 값이 큰 차이가 나지 않았으며, 5일의 주기로도 벼의 생육 주기를 잘 모니터링할 수 있었다. 고랭지 배추밭의 경우, Sentinel-2A/B에서는 고랭지 배추의 짧은 생육 주기가 잘 나타났지만, MODIS는 공간해상도의 한계를 보였다. 이와 함께 CC-MNC 기법은 수확 시기에 구름 화소가 합성에 사용되는 현상이 보이기도 하였으며, 국내지역에 맞게 VZA 임계치의 조정이 필요하다는 시사점이 도출되었다.
The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.