• Title/Summary/Keyword: NDT (Non-Destructive Testing)

Search Result 91, Processing Time 0.034 seconds

A Study on Manufacturing Method of Standard Void Specimens for Non-destructive Testing in RFI Process and Effect of Void on Mechanical Properties (RFI 공정 부품 비파괴검사용 표준 기공률 시편 제조 방법 및 기공률에 따른 기계적 물성 영향에 대한 연구)

  • Han, Seong-Hyeon;Lee, Jung-Wan;Kim, Jung-Soo;Kim, Young-Min;Kim, Wee-Dae;Um, Moon-Kwang
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • The RFI process is an OoA process that fiber mats and resin films are laminated and cured in a vacuum bag. In case that resin film is insufficient to fill empty space in fibers, it makes void defect in composites and this void decrease mechanical properties of the composites. For this reason, non-destructive testing is usually used to evaluate void of manufactured composites. So, in this study, a manufacturing method of standard void specimens, which are able to be used as references in non-destructive testing, was proposed by controlling resin film thickness in the RFI process. Also, a fiber compaction test was proposed as a method to set the resin film thicknesses depending on target voids of manufacturing panels. The target void panels of 0%, 2%, and 4% were made by the proposed methods, and signal attenuation depending on void was measured by non-destructive testing and image analysis. In addition, voids of specimens for tensile, in-plane, short beam and compressive tests were estimated by signal attenuation, and mechanical properties were evaluated depending on the voids.

Characteristics Magnetic Flux Leakage According to the Position of Hall Sensor (Hall 센서 위치에 따른 MFL 특성 고찰)

  • Kim, Sean;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.819-821
    • /
    • 2001
  • This paper describes a characteristics of MFL according to the position of Hall sensor Magnetic Flux Leakage(MFL) Method is used to detect surface defect in ferromagnetic plate. A plate has a surface defect and magnetizing equipment are producted to perform Non-Destructive Testing(NDT) using MFL. The SM 45C carbon steel plate is adopted to this experiment. there is a artifical defect with a twice of thickness and a half of depth of plate. Magnetizing equipment is composed of yoke made by layer-built of silicon sheet steel, NdFeB magnetic and iron brushes. Detecting defect is performed by MFL NDT using Hall sensor. It is shown that magnetic flux detected by Hall sensor is affected according to the position of Hall sensor through MFL experiment and numerical analysis.

  • PDF

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

Defect Detection in Friction Stir Welding by Online Infrared Thermography

  • Kryukov, Igor;Hartmann, Michael;Bohm, Stefan;Mund, Malte;Dilger, Klaus;Fischer, Fabian
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2014
  • Friction Stir Welding (FSW) is a complex process with several mutually interdependent parameters. A slight difference from known settings may lead to imperfections in the stirred zone. These inhomogeneities affect on the mechanical properties of the FSWed joints. In order to prevent the failure of the welded joint it is necessary to detect the most critical defects non-destructive. Especially critical defects are wormhole and lack of penetration (LOP), because of the difficulty of detection. Online thermography is used process-accompanying for defect detecting. A thermographic camera with a fixed position relating to the welding tool measures the heating-up and the cool down of the welding process. Lap joints with sound weld seam surfaces are manufactured and monitored. Different methods of evaluation of heat distribution and intensity profiles are introduced. It can be demonstrated, that it is possible to detect wormhole and lack of penetration as well as surface defects by analyzing the welding and the cooling process of friction stir welding by passive online thermography measurement. Effects of these defects on mechanical properties are shown by tensile testing.

A Study on the Defect Classification and Evaluation in Weld Zone of Austenitic Stainless Steel 304 Using Neural Network (신경회로망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 분류 및 평가에 관한 연구)

  • Lee, Won;Yoon, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.149-159
    • /
    • 1998
  • The importance of soundness and safety evaluation in weld zone using by the ultrasonic wave has been recently increased rapidly because of the collapses of huge structures and safety accidents. Especially, the ultrasonic method that has been often used for a major non-destructive testing(NDT) technique in many engineering fields plays an important role as a volume test method. Hence, the defecting any defects of weld Bone in austenitic stainless steel type 304 using by ultrasonic wave and neural network is explored in this paper. In order to detect defects, a distance amplitude curve on standard scan sensitivity and preliminary scan sensitivity represented of the relation between ultrasonic probe, instrument, and materials was drawn based on a quantitative standard. Also, a total of 93% of defect types by testing 30 defect patterns after organizing neural network system, which is learned with an accuracy of 99%, based on ultrasonic evaluation is distinguished in order to classify defects such as holes or notches in experimental results. Thus, the proposed ultrasonic wave and neural network is useful for defect detection and Ultrasonic Non-Destructive Evaluation(UNDE) of weld zone in austenitic stainless steel 304.

  • PDF

A Study on NDT Techniques for Evaluation of Corrosion in Multi-layered Conductive Structures of Urban Railroad Car of the paper (도시철도차량의 다층 구조물 부식 측정을 위한 비파괴 기법 연구)

  • Lee, Chan-Woo;Chung, Jung-Duk;Song, Sung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2691-2696
    • /
    • 2011
  • THE CARBODY AND BOGIE FRAME OF AN URBAN RAILWAY VEHICLE CONSIST OF MULTI-LAYERED WELDING STRUCTURE. IN KOREA ENDURANCE LIMIT OF AN URBAN RAILWAY VEHICLE IS STSTED IN THE RULE OF MANAGING URBAN RAILWAY VEHICLE UNDER THE LAW OF URBAN RAILWAY. IN KOREA AN URBAN RAILWAY VEHICLE IS DESIGNED AND MADE TO KEEP ITS QUALITY OVER 25 YEARS. WHEN THE RAILWAY VEHICLE BECOMES 25 YEARS OLD, CORROSION OF CARBODY AND UNDER FRAME OF A RAILWAY VEHICLE IS EVALUATED ACCORDING TO THE NON-DESTRUCTIVE TESTING. IT CAN BE USED AS LONG AS 40 YEARS. IT IS STATED IN THE ARTICLE 4 'THE METHOD AND STANDARDS OF PRECISE DIAGNOSIS' UNDER THE RULE OF MANAGING RAILWAY VEHICLE IN KOREA. SO, IN THIS STUDY, WE HAVE INVESTIGATED PERFORMANCE OF PULSED EDDY CURRENT TESTING METHOD BY MEASURING THICKNESS VARIATION OF FABRICATE OF CARBODY AND UNDER FRAME FOR URBAN RAILROAD CAR. AND THEM, THE PROCESS OF EVALUATING REMAINING LIFE ACCORDING TO TESTING OF CORROSION AMOUNT IS INTRODUCED.

  • PDF

Review of Non-Destructive Evaluation Technologies for Rail Inspection (철도 레일의 결함 검출을 위한 비파괴탐상 기술)

  • Han, Soon-Woo;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.398-413
    • /
    • 2011
  • For railway safety, it is very important to detect damages of rails at their early stage because any undetected damage in a rail can break the rail and cause a serious railway accident. In this paper, several NDT applicable to rail inspections are described. Major damage types in rails are discussed first and the rail inspection technology using conventional piezoelectric ultrasonic transducers, which is widely adopted for damage detection of rails, is explained. Other NDT being researched or tested for rail inspection are also discussed as complementary technologies to the concurrent contact type ultrasonic inspection. Characteristics of each rail inspection technologies are evaluated in order to provide requirements for future development of a new rail inspection method.

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.

The Measurement Method of Small Deformation by using Holographic Interferometry (홀로그래픽 산섭법을 이용한 미소변형 측정법)

  • 강영준;문상준;최장섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.273-278
    • /
    • 1993
  • Conventional measurement methods for non-destructive testing(NDT) in nuclear power plants other industrial plants have been performed as the methods of contact with objects to be inspect, but those methods have been taken relatively much time to be inspected. Holographic interferometry which is a non-contact optical measurement method using a coherent light can overcome these demerit, and also has an advantage that the quantitative measurement of small deformation for large areas can be accomplished at a time with high precision. In this paper the comparisons of the experimental results from holographic interferometry with those form the finite element method(FEM) and the analytical solutions of elastic equation are discussed.

  • PDF